Errata for *J. Oleo Science*, Vol.70, No.2, p.249, 250 (2021) δ -Tocopherol Slightly Accumulates in the Adipose Tissue of Mice Fig. 1 Concentration of α -tocopherol in each tissue of the control and high-fat and high-sucrose groups. C: control diet (n=6), H: high-fat and high-sucrose diet (n=5). The data are presented as mean \pm SD. Fig. 2 Concentration of α -tocopherol in each tissue of the $C\alpha$ and $H\alpha$ groups. $C\alpha$: control diet $+\alpha$ -tocopherol (n=5), $H\alpha$: high-fat and high-sucrose diet $+\alpha$ -tocopherol (n=5). The data are presented as mean \pm SD. Statistical analysis was performed by Student' t-test $(C\alpha$ vs. $H\alpha$). *; p < 0.05. Fig. 4 Fig. 1 Concentration of α -tocopherol in each tissue of the control and high-fat and high-sucrose groups. C: control diet(n=6), H: high-fat and high-sucrose diet(n=4-5). The data are presented as mean \pm SD. Fig. 2 Concentration of α -tocopherol in each tissue of the $C\alpha$ and $H\alpha$ groups. $C\alpha$: control diet + α -tocopherol (n=5), $H\alpha$: high-fat and high-sucrose diet + α -tocopherol (n=5). The data are presented as mean \pm SD. Statistical analysis was performed by Student t-test $(C\alpha \text{ vs } H\alpha)$. **; p < 0.01. Fig. 3 #### 0 # 3.2 $\,$ $\alpha\text{-T}$ concentration in the mouse tissue of the C and H groups #### Error: C, 0.26 ± 0.13 μg/mL; Cα, 7.25 ± 0.20 μg/mL; Cδ, 1.34 ± 0.23 μg/mL; H, 0.33 ± 0.01 μg/mL; Hα, 8.22 ± 0.69 μg/mL; Hδ, 1.25 ± 0.09 μg/mL #### **Correction:** C, 0.26 ± 0.16 µg/mL; $C\alpha$, 7.25 ± 0.28 µg/mL; $C\delta$, 1.34 ± 0.33 µg/mL; H, 0.33 ± 0.02 µg/mL; H α , 8.22 ± 0.84 µg/mL; H δ , 1.25 ± 0.12 µg/mL ## 3.3 $\,\delta$ -T concentration in the mouse tissue of the C and H groups ## Error: $C\delta$, $0.063 \pm 0.003 \mu g/mL$, $H\delta$, $0.106 \pm 0.016 \mu g/mL$ ## Correction: $C\delta$, $0.063 \pm 0.004 \mu g/mL$, $H\delta$, $0.106 \pm 0.020 \mu g/mL$