アブストラクト
Title | 画像バイオマーカー |
---|---|
Subtitle | 特集 アルツハイマー病 update |
Authors | 島田斉*1*2 |
Authors (kana) | |
Organization | *1新潟大学脳研究所統合脳機能研究センター臨床機能脳神経学分野, *2国立研究開発法人量子科学技術研究開発機構量子医科学研究所脳機能イメージング研究部 |
Journal | 医学と薬学 |
Volume | 79 |
Number | 1 |
Page | 25-34 |
Year/Month | 2022 / 1 |
Article | 報告 |
Publisher | 自然科学社 |
Abstract | 「抄録」アルツハイマー病 (AD) の臨床診断において各種画像バイオマーカーが果たす役割は大きい. CTやMRIによる形態学的な評価で海馬周囲の脳萎縮がみられることや, 脳血流SPECTやFDG PETで特徴的な脳循環代謝の変化がみられることは広く周知された知見である. さらに統計画像解析技術の発達は, 専門医のみならず非専門医においてもこれらの画像バイオマーカーを活用することを容易にした. 一方, これらの画像バイオマーカーを利用するにあたっては, その感度・特異度に関わる問題点や画像所見の意義をよく理解することが重要である. 近年, ADの特徴的な脳病理であるアミロイドβやタウ病変を可視化する神経病理イメージング技術の発達も目覚ましく, ADを中心とする認知症病態の理解は大きく深化した. 新規治療薬の臨床試験においても, すでにさまざまな形で神経病理イメージング技術は活用されており, 創薬分野において欠かすことのできない基盤的な技術となってきている. |
Practice | 医学総合 |
Keywords | アルツハイマー病, MRI, 脳循環代謝画像, アミロイドPET, タウPET |
- 全文ダウンロード: 従量制、基本料金制の方共に913円(税込) です。
参考文献
- 1) De Leon MJ, George AE, Stylopoulos LA, et al: Early marker for Alzheimer's disease: the atrophic hippocampus. Lance 2(8664):672-673, 1989.
- 2) Seab JP, Jagust WJ, Wong STS, et al: Quantitative NMR measurements of hippocampal atrophy in Alzheimer's disease. Magn Reson Med 8:200-208, 1988.
- 3) Press GA, Amaral DG, Squire LR: Hippocampal abnormalities in amnesic patients revealed by high-resolution magnetic resonance imaging. Nature 341:54-57, 1989.
- 4) Jack CR Jr, Twomey CK, Zinsmeister AR, et al: Anterior temporal lobes and hippocampal formations: normative volumetric measurements from MR images in young adults. Radiology 172:549-554, 1989.
- 5) Barclay LL, Linden C, Murtagh R: Medial temporal atrophy as a magnetic resonance imaging marker for Alzheimer's disease. J Neuroimaging 2:131-135, 1992.
残りの53件を表示する
- 6) Kesslak JP, Nalcioglu O, Cotman CW: Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer's disease. Neurology 41:51-54, 1991.
- 7) Scheltens P, Leys D, Barkhof F, et al: Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55(10):967-972, 1992.
- 8) Gupta Y, Lee KH, Choi KY, et al: Early diagnosis of Alzheimer's disease using combined features from voxel-based morphometry and cortical, subcortical, and hippocampus regions of MRI T1 brain images. PLoS One 14(10):e0222446, 2019.
- 9) Querbes O, Aubry F, Pariente J, et al: Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 132(Pt 8):2036-2047, 2009.
- 10) Matsuda H, Mizumura S, Nemoto K, et al: Automatic voxel-based morphometry of structural MRI by SPM8 plus diffeomorphic anatomic registration through exponentiated lie algebra improves the diagnosis of probable Alzheimer Disease. AJNR Am J Neuroradiol 33(6):1109-1114, 2012.
- 11) Sone D, Imabayashi E, Maikusa N, et al: Voxel-based Specific Regional Analysis System for Alzheimer's Disease (VSRAD) on 3-tesla Normal Database: Diagnostic Accuracy in Two Independent Cohorts with Early Alzheimer's Disease. Aging Dis 9(4):755-760, 2018.
- 12) Taswell C, Villemagne VL, Yates P, et al: 18F-FDG PET Improves Diagnosis in Patients with Focal-Onset Dementias. J Nucl Med 56(10):1547-1553, 2015
- 13) Minoshima S, Frey KA, Koeppe RA, et al: A diagnostic approach in Alzheimer's disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 36(7):1238-1248, 1995.
- 14) Singleton EH, Pijnenburg YAL, Sudre CH, et al: Investigating the clinico-anatomical dissociation in the behavioral variant of Alzheimer disease. Alzheimers Res Ther 12(1):148, 2020.
- 15) Lim SM, Katsifis A, Villemagne VL, et al: The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med 50(10):1638-1645, 2009.
- 16) Sato T, Hanyu H, Hirao K, et al: Deep gray matter hyperperfusion with occipital hypoperfusion in dementia with Lewy bodies. Eur J Neurol 14(11):1299-1301, 2007.
- 17) Katako A, Shelton P, Goertzen AL, et al: Machine learning identified an Alzheimer's disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson's disease dementia. Sci Rep 8(1):13236, 2018.
- 18) Iizuka T, Fukasawa M, Kameyama M: Deep-learning-based imaging-classification identified cingulate island sign in dementia with Lewy bodies. Sci Rep 9(1):8944, 2019.
- 19) Morinaga A, Ono K, Ikeda T, et al: A comparison of the diagnostic sensitivity of MRI, CBF-SPECT, FDG-PET and cerebrospinal fluid biomarkers for detecting Alzheimer's disease in a memory clinic. Dement Geriatr Cogn Disord 30(4):285-292, 2010.
- 20) Ferreira D, Verhagen C, Hernandez-Cabrera JA, et al: Distinct subtypes of Alzheimer's disease based on patterns of brain atrophy: longitudinal trajectories and clinical applications. Sci Rep 7:46263, 2017.
- 21) Risacher SL, Anderson WH, Charil A, et al: Alzheimer disease brain atrophy subtypes are associated with cognition and rate of decline. Neurology 89(21):2176-2186, 2017.
- 22) Rahimi J, Kovacs GG: Prevalence of mixed pathologies in the aging brain. Alzheimers Res Ther 6(9):82, 2014.
- 23) Mori K, Iwasaki Y, Ito M, et al: [Decreased myocardial uptake of meta-iodobenzylguanidine in an autopsy-confirmed case of corticobasal degeneration with Lewy bodies restricted to the sympathetic ganglia]. Rinsho Shinkeigaku 52(6):405-410, 2012.
- 24) Scheltens P, Leys D, Barkhof F, et al: Atrophy of medial temporal lobes on MRI in "probable" Alzheimer's disease and normal ageing: diagnostic value and neuropsychological correlates. J Neurol Neurosurg Psychiatry 55(10):967-972, 1992.
- 25) Shimada H, Shinotoh H, Hirano S, et al: β-Amyloid in Lewy body disease is related to Alzheimer's disease-like atrophy. Mov Disord 28(2):169-175, 2013.
- 26) Kitagaki H, Mori E, Yamaji S, et al. Frontotemporal dementia and Alzheimer disease: evaluation of cortical atrophy with automated hemispheric surface display generated with MR images. Radiology 208(2):431-439, 1998.
- 27) Sakurai K, Tokumaru AM, Ikeda T, et al: Characteristic asymmetric limbic and anterior temporal atrophy in demented patients with pathologically confirmed argyrophilic grain disease. Neuroradiology 61(11):1239-1249, 2019
- 28) Botha H, Mantyh WG, Murray ME, et al. FDG-PET in tau-negative amnestic dementia resembles that of autopsy-proven hippocampal sclerosis. Brain 141(4):1201-1217, 2018.
- 29) Ikeuchi T, Imamura T, Kawase Y, et al: Evidence for a Common Founder and Clinical Characteristics of Japanese Families with the MAPT R406W Mutation. Dement Geriatr Cogn Dis Extra 1(1):267-275, 2011.
- 30) Klunk WE, Engler H, Nordberg A, et al: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B. Ann Neurol 55(3):306-319, 2004.
- 31) Clark CM, Schneider JA, Mintun MA, et al: Phase III trial results for the amyoid PET imaging agent Florbetapir F 18 (18F-AV-45): imaging to histopathologic correlations in an end-of-life human subject study. Alzheimers Dement 6(4):71, 2010.
- 32) Curtis C, Gamez JE, Singh U, et al: Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 72(3):287-294, 2015.
- 33) Sabri O, Sabbagh MN, Seibyl J, et al: Florbetaben PET imaging to detect amyloid beta plaques in Alzheimer's disease: phase 3 study. Alzheimers Dement 11(8):964-974, 2015.
- 34) PET核医学委員会PET撮像法標準化専門委員会:アミロイドイメージング剤を用いた脳PET撮像の標準的プロトコール公開版第5版. http://jsnm.org/archives/5792/
- 35) ガイドライン作成ワーキンググループ:アミロイドPETイメージング剤の適正使用ガイドライン(第2版). http://jsnm.org/archives/655/
- 36) Iwatsubo T, Iwata A, Suzuki K, et al: Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies: Harmonization for international trials. Alzheimers Dement 14(8):1077-1087, 2018.
- 37) Landau SM, Horng A, Fero A, et al, and For the Alzheimer's Disease Neuroimaging Initiative: Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 86(15):1377-1385, 2016.
- 38) Iwatsubo T, Iwata A, Suzuki K, et al. Japanese and North American Alzheimer's Disease Neuroimaging Initiative studies: Harmonization for international trials. Alzheimers Dement 14(8):1077-1087, 2018.
- 39) Yamada M: [Senile Dementia of the Neurofibrillary Tangle Type (SD-NFT)]. Brain Nerve 70(5):533-541, 2018.
- 40) Curtis C, Gamez JE, Singh U, et al: Phase 3 trial of flutemetamol labeled with radioactive fluorine 18 imaging and neuritic plaque density. JAMA Neurol 72(3):287-294, 2015.
- 41) Crary JF, Trojanowski JQ, Schneider JA, et al: Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128(6):755-766, 2014.
- 42) Chien DT, Bahri S, Szardenings AK, et al: Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807. J Alzheimers Dis. 34(2):457-468, 2013.
- 43) Maruyama M, Shimada H, Suhara T, et al: Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron 79(6):1094-1108, 2013.
- 44) Okamura N, Furumoto S, Harada R, et al:Novel 18F-labeled arylquinoline derivatives for non-invasive imaging of tau pathology in Alzheimer disease. J Nucl Med 54(8):1420-1427, 2013.
- 45) Aguero C, Dhaynaut M, Normandin MD, et al: Autoradiography validation of novel tau PET tracer [F-18]-MK-6240 on human postmortem brain tissue. Acta Neuropathol Commun 7(1):37, 2019.
- 46) Wong DF, Comley RA, Kuwabara H, et al: Characterization of 3 Novel Tau Radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in Healthy Controls and in Alzheimer Subjects. J Nucl Med 59(12):1869-1876, 2018.
- 47) Sanabria Bohorquez S, Marik J, Ogasawara A, et al: [18F] GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer's disease. Eur J Nucl Med Mol Imaging 4(610):2077-2089, 2019.
- 48) Kroth H, Oden F, Molette J, et al: Discovery and preclinical characterization of [(18)F] PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies. Eur J Nucl Med Mol Imaging 46(10):2178-2189, 2019.
- 49) Schmidt ME, Janssens L, Moechars D, et al: Clinical evaluation of[(18)F] JNJ-64326067, a novel candidate PET tracer for the detection of tau pathology in Alzheimer's disease. Eur J Nucl Med Mol Imaging 47(13):3176-3185, 2020.
- 50) Tagai K, Ono M, Kubota M, et al: High-Contrast In Vivo Imaging of Tau Pathologies in Alzheimer's and Non-Alzheimer's Disease Tauopathies. Neuron 109(1):42-58.e8, 2021.
- 51) Crary JF, Trojanowski JQ, Schneider JA, et al. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol 128(6):755-766, 2014.
- 52) Johnson KA, Schultz A, Betensky RA, et al: Tau positron emission tomographic imaging in aging and early Alzheimer disease. Ann Neurol 79(1):110-119, 2016.
- 53) Jack CR Jr, Wiste HJ, Schwarz CG, et al: Longitudinal tau PET in ageing and Alzheimer's disease. Brain 141(5):1517-1528, 2018.
- 54) Shimada H, Kitamura S, Shinotoh H, et al: Association between Abeta and tau accumulations and their influence on clinical features in aging and Alzheimer's disease spectrum brains: A[11C] PBB3-PET study. Alzheimers Dement (Amst) 6:11-20, 2016.
- 55) Sintini I, Graff-Radford J, Senjem ML, et al: Longitudinal neuroimaging biomarkers differ across Alzheimer's disease phenotypes. Brain 143(7):2281-2294, 2020.
- 56) Ossenkoppele R, Lyoo CH, Sudre CH, et al: Distinct tau PET patterns in atrophy-defined sub-types of Alzheimer's disease. Alzheimers Dement 16(2):335-344, 2020.
- 57) Vogel JW, Young AL, Oxtoby NP, et al. Four distinct trajectories of tau deposition identified in Alzheimer's disease. Nat Med 27(5):871-881, 2021.
- 58) Mintun MA, Lo AC, Duggan Evans C, et al: Donanemab in Early Alzheimer's Disease. N Engl J Med 384(18):1691-1704, 2021.