アブストラクト
Title | デジタルデバイスとブルーライト |
---|---|
Subtitle | 特集 デジタルデバイス時代の視機能管理 |
Authors | 綾木雅彦*, 坪田一男** |
Authors (kana) | |
Organization | *おおたけ眼科つきみ野医院, **慶應義塾大学医学部眼科学教室 |
Journal | あたらしい眼科 |
Volume | 36 |
Number | 7 |
Page | 895-899 |
Year/Month | 2019 / 7 |
Article | 報告 |
Publisher | メディカル葵出版 |
Abstract | 「I サーカディアンリズムとメラトニンの発見から現代のデジタルデバイスまで」デジタルデバイスは人類史上初めての光環境で, サーカディアンリズムに影響を与えている. サーカディアンリズムは太陽光を絶対的環境基準としてできあがったもっとも基本的な生理機能である. 25億年前に葉緑素をもつ原生動物シアノバクテリアが光合成を始め, サーカディアンリズムが形成された. その研究はオジキソウが24時間周期で動き続けることを18世紀にフランスの科学者が報告してから始まったとされている. サーカディアンリズムと密接に同期して分泌されるメラトニンが発見されたのは約60年前で, オタマジャクシの皮膚を黒くする物質として松果体から分離された. 明るいと眠気が減るのは光によるメラトニンの分泌抑制の効果であると知られてきたのは, その20年後の1980年代になってからである. |
Practice | 臨床医学:外科系 |
Keywords |
- 全文ダウンロード: 従量制、基本料金制の方共に803円(税込) です。
参考文献
- 1) Lerner AB, Case JD, Mori W et al: Melatonin in peripheral nerve. Nature 183:1821, 1959
- 2) Lewy AJ, Wehr TA, Goodwin FK et al: Light suppresses melatonin secretion in humans. Science 210:1267-1269, 1980
- 3) Provencio I, Jiang G, De Grip WJ et al: Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci USA 95:340-345, 1998
- 4) Panda S, Provencio I, Tu DC et al: Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525-527, 2013
- 5) Kuze M, Morita T, Fukuda Y et al: Electrophysiological responses from intrinsically photosensitive retinal ganglion cells are diminished in glaucoma patients. J Optom 10:226-232, 2017
残りの40件を表示する
- 6) Gracitelli CP, Duque-Chica GL, Moura AL et al: A positive association between intrinsically photosensitive retinal ganglion cells and retinal nerve fiber layer thinning in glaucoma. Invest Ophthalmol Vis Sci 18:7997-8005, 2014
- 7) 綾木雅彦:ブルーライトとサーカディアンリズム. 眼科 55:795-801, 2013
- 8) Hatori M, Gronfier C, Van Gelder RN et al: Global rise of potential health hazards caused by blue light-induced circadian disruption in modern aging societies. NPJ Aging Mech Dis 3:9, 2017
- 9) Ide T, Toda I, Miki E, Tsubota K: Effect of blue light-reducing eye glasses on critical flicker frequency. Asia-Pacific J Ophthalmol 4:80-85, 2015
- 10) Kaido M, Toda I, Oobayashi T et al: Reducing short-wavelength blue light in dry eye patients with unstable tear film improves performance on tests of visual acuity. PLoS One 11:e0152936, 2016
- 11) Noseda R, Kainz V, Jakubowski M et al: A neural mechanism for exacerbation of headache by light. Nat Neurosci 13:239-245, 2010
- 12) Moulton EA, Becerra L, Borsook D: An fMRI case report of photophobia: activation of the trigeminal nociceptive pathway. Pain 145:358-363, 2009
- 13) Matynia A, Nguyen E, Sun X et al: Peripheral sensory neurons expressing melanopsin respond to light. Front Neurol Circuits 10:60, 2016
- 14) Matynia A, Parikh S, Chen B et al: Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Exp Eye Res 105:60-69, 2012
- 15) Ayaki M, Kuze M, Kondo M et al: Association between retinal nerve fiber layer thickness and eye fatigue BioMed Res Int 2019:3014567, 2019
- 16) Kishi S, Li D, Takahashi M et al: Photoreceptor damage after prolonged gazing at a computer game display. Jpn J Ophthalmol 54:514-516, 2010
- 17) Saw SM: Myopia and night lighting in children in Singapore. Br J Ophthalmol 85:527-528, 2001
- 18) Zadnik K: Myopia and ambient night-time lighting. CLEERE Study Group: Collaborative longitudinal evaluation of ethnicity and refractive error. Nature 404:143-144, 2000
- 19) Imamura YS, Noda S, Hashizume K et al: Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103:11282-11287, 2006
- 20) Narimatsu T, Ozawa Y, Miyake S et al: Biological effects of blocking blue and other visible light on the mouse retina. Clin Exp Ophthalmol 42:555-63, 2014
- 21) Niwano Y, Kanno T, Iwasawa A et al: Blue light injures corneal epithelial cells in the mitotic phase in vitro. Br J Ophthalmol 98:990-992, 2014
- 22) Lee HS, Cui L, Li Y et al: Influence of light emitting diode-derived blue light overexposure on mouse ocular surface. PLoS One 11:e0167671, 2016
- 23) Marek V, Melik-Parsadaniantz S, Villette T et al: Blue light phototoxicity toward human corneal and conjunctival epithelial cells in basal and hyperosmolar conditions. Free Radic Biol Med 126:27-40, 2018
- 24) Kurihara T, Omoto M, Soda K et al: Retinal phototoxicity in a novel murine model of intraocular lens implantation. Mol Vis 15:2751-2761, 2009
- 25) Niwano Y, Iwasawa A, Tsubota K et al: Protective effects of blue light-blocking shades on phototoxicity in human ocular surface cells. BMJ Open Ophthalmol 2019;0:e000217. doi:10.1136/bmjophth-2018-000217
- 26) Lawrenson JG, Hull CC, Downie LE: The effect of blue-light blocking spectacle lenses on visual performance, macular health and the sleep-wake cycle: a systematic review of the literature. Ophthalmic Physiol Opt 37:644-654, 2017
- 27) Lin JB, Gerratt B, Bassi CJ et al: Short-wavelength light-blocking eyeglasses attenuate symptoms of eye fatigue. Invest Ophthalmol Vis Sci 58:442-447, 2017
- 28) 綾木雅彦:思春期の体と眼にブルーライトが与える影響. 思春期学 37:107-112, 2019
- 29) Yoshimura M, Kitazawa M, Maeda Y et al: Smartphone viewing distance and sleep: an experimental study utilizing motion capture technology. Nat Sci Sleep 9:59-65, 2017
- 30) Higuchi S, Lee SI, Kozaki et al: Late circadian phase in adults and children is correlated with use of high color temperature light at home at night. Chronobiol Int 33:448-452, 2016
- 31) Higuchi S, Nagafuchi Y, Lee SI et al: Influence of light at night on melatonin suppression in children. J Clin Endocrinol Metab 99:3298-3303, 2014
- 32) Crowley SJ, Acebo C, Carskadon MA: Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med 8:602-612, 2007
- 33) Carskadon, MA: Sleep in adolescents: the perfect storm. Pediatr Clin North Am 58:637-647, 2011
- 34) Carskadon MA: Maturation of processes regulating sleep in adolescents sleep in children. In: Developmental changes in sleep patterns (edited by Marcus CL, Carroll JL, Donnelly DF, et al), p95-114, Informa Healthcare USA, Inc. New York, 2008
- 35) Crowley SJ, Van Reen E, LeBourgeois MK et al: A longitudinal assessment of sleep timing, circadian phase, and phase angle of entrainment across human adolescence. PLoS One 9:e112199, 2014
- 36) Kitazawa M, Yoshimura M, Murata M et al: Associations between problematic internet use and psychiatric symptoms among university students in Japan. Psychiatry Clin Neurosci 72:531-539, 2018
- 37) Mak KK: Sleep and academic performance in Hong Kong adolescents. J Sch Health 82:522-527, 2015
- 38) Ayaki M, Hattori A, Maruyama Y et al: Protective effect of blue-light shield eyewear for adults against light pollution from self-luminous devices used at night. Chronobiol Int 33:134-139, 2015
- 39) van der Lely S, Frey S, Garbazza C et al: Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolese Health 56:113-119, 2015
- 40) Cain N, Gradisar M: Electronic media use and sleep in school-aged children and adolescents: a review. Sleep Med 11:735-742, 2010
- 41) Chang AM, Aeschbach D, Duffy JF et al: Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proc Natl Acad Sci USA 112:1232-1237, 2015
- 42) Gronli J, Byrkjedal IK, Bjorvatn B et al: Reading from an Tad or from a book in bed: the impact on human sleep. A randomized controlled crossover trial. Sleep Med 21:86-92, 2016
- 43) Twenge JM, Hisler GC, Krizan Z: Associations between screen time and sleep duration are primarily driven by portable electronic devices: evidence from a population-based study of U.S. children ages 0-17. Sleep Med 56:211-216, 2019 2018
- 44) Cabre-Riera A, Torrent M, Donaire-Gonzalez D et al: Telecommunication devices use, screen time and sleep in adolescents. Environ Res 171:341-347, 2018
- 45) Mireku MO, Barker MM, Mutz J et al: Night-time screen-based media device use and adolescents' sleep and health-related quality of life. Environ Int 124:66-78, 2019