~
検索条件をクリア

アブストラクト

Title 感覚機能および感覚障害の最新知見と理学療法アプローチへの応用
Subtitle 特集 感覚障害に対する理学療法アプローチ
Authors 嘉戸直樹*
Authors (kana)
Organization *神戸リハビリテーション福祉専門学校研究教育センター
Journal 理学療法
Volume 39
Number 10
Page 875-882
Year/Month 2022 / 10
Article 報告
Publisher メディカルプレス
Abstract 1. 表在感覚, 深部感覚, 平衡感覚の受容器からの情報は, 大脳皮質に伝えられ感覚の認識に関わるとともに姿勢や運動の制御に関わる. 2. 運動を行うと大量の感覚が生じるため, 中枢神経には感覚情報の適切な調整が求められる. 感覚情報は, 運動の内容や学習段階に応じて, 皮質や皮質下のさまざまな部位で排除・選別されている. 3. 表在感覚や深部感覚の障害に対する理学療法においては, 障害部位を確認して感覚の入力量を増やすか, 他の感覚モダリティによって補うかを検討する必要がある. 平衡感覚の障害に対する理学療法については, 前庭リハビリテーションに加えて電気刺激も効果があることが明らかになっている.
Practice 医療技術
Keywords
  • 全文ダウンロード: 従量制、基本料金制の方共に1,360円(税込) です。

参考文献

  • 1) Johansson RS, Flanagan JR : Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci 10(5) : 345-359, 2009
  • 2) 岩村吉晃 : タッチの生理学. タッチ, pp25-53. 医学書院, 2001
  • 3) Pinault D : The thalamic reticular nucleus : structure, function and concept. Brain Res Rev 46(1) : 1-31, 2004
  • 4) Terumitsu M et al : Participation of primary motor cortex area 4a in complex sensory processing : 3.0-T fMRI study. Neuroreport 20(7) : 679-683, 2009
  • 5) Nakajima T et al : Location specificity of plantar cutaneous reflexes involving lower limb muscles in humans. Exp Brain Res 175(3) : 514-525, 2006
残りの35件を表示する
  • 6) Nakajima T et al : Regionally distinct cutane-ous afferent populations contribute to reflex modulation evoked by stimulation of the tibial nerve during walking. J Neurophysiol 116(1) : 183-190, 2016
  • 7) Seki K, Fetz EF : Gating of sensory input at spinal and cortical levels during preparation and execution of voluntary movement. J Neu-rosci 32(3) : 890-902, 2012
  • 8) Seki K et al : Task-dependent modulation of primary afferent depolarization in cervical spinal cord of monkeys performing an in-structed delay task. J Neurophysiol 102(1) : 85-99, 2009
  • 9) Edin BB, Abbs JH : Finger movement re-sponses of cutaneous mechanoreceptors in the dorsal skin of the human hand. J Neurophysiol 65(3) : 657-670, 1991
  • 10) Naito E et al : Body representations in the human brain revealed by kinesthetic illusions and their essential contributions to motor con-trol and corporeal awareness. Neurosci Res 104 : 16-30, 2016
  • 11) Nielsen JB : How we walk : central control of muscle activity during human walking. Neuro-scientist 9(3) : 195-204, 2003
  • 12) Sinkjaer T et al : Major role for sensory feed-back in soleus EMG activity in the stance phase of walking in man. J Physiol 523(Pt 3) : 817-827, 2000
  • 13) Kamibayashi K et al : Effect of sensory inputs on the soleus H-reflex amplitude during robot-ic passive stepping in humans. Exp Brain Res 202(2) : 385-395, 2010
  • 14) Confais J et al : Nerve-specific input modula-tion to spinal neurons during a motor task in the monkey. J Neurosci 37(10) : 2612-2626, 2017
  • 15) Rothwell JC et al : Manual motor perform-ance in a deafferented man. Brain 105 : 515-542, 1982
  • 16) Ghez C et al : Impairments of reaching move-ments in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol 73(1) : 361-372, 1995
  • 17) Dakin CJ et al : Muscle-specific modulation of vestibular reflexes with increased locomotor velocity and cadence. J Neurophysiol 110(1) : 86-94, 2013
  • 18) Magnani RM et al : Stabilization demands of walking modulate the vestibular contributions to gait. Sci Rep 11(1) : 13736, 2021
  • 19) Herssens N et al : An exploratory investiga-tion on spatiotemporal parameters, margins of stability, and their interaction in bilateral ves-tibulopathy. Sci Rep 11(1) : 6427, 2021
  • 20) Liu P et al : Characterizing patients with uni-lateral vestibular hypofunction using kinemat-ic variability and local dynamic stability dur-ing treadmill walking. Behav Neurol 2017 : 4820428, 2017
  • 21) 日本臨床神経生理学会編 : 体性感覚誘発電位(SEP). 誘発電位測定マニュアル 2019, pp41-61. 診断と治療社, 2019
  • 22) Carey LM : Review on somatosensory loss af-ter stroke. Crit Rev Phys Rehabil Med 29 : 1-46, 2017
  • 23) Edwards LL et al : Putting the "sensory" into sensorimotor control : The role of senso-rimotor integration in goal-directed hand movements after stroke. Front Integr Neurosci 13 : 16, 2019
  • 24) Borstad A et al : Tactile sensation improves following motor rehabilitation for chronic stroke : The VIGoROUS randomized control-led trial. Neurorehabil Neural Repair 36(8) : 525-534, 2022
  • 25) Cohen LG, Starr A : Vibration and muscle contraction affect somatosensory evoked po-tentials. Neurology 35(5) : 691-698, 1985
  • 26) Rushton DN et al : Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104(3) : 465-491, 1981
  • 27) Knecht S et al : Facilitation of somatosensory evoked potentials by exploratory finger move-ments. Exp Brain Res 95(2) : 330-338, 1993
  • 28) Peters S et al : Cortical processing of irrele-vant somatosensory information from the leg is altered by attention during early movement preparation. Brain Res 1707 : 45-53, 2019
  • 29) Nelson AJ et al : The gain of initial somato-sensory evoked potentials alters with practice of an accurate motor task. Brain Res 890(2) : 272-279, 2001
  • 30) Andrew D et al : Do pursuit movement tasks lead to differential changes in early somato-sensory evoked potentials related to motor learning compared with typing tasks? J Neu-rophysiol 113(4) : 1156-1164, 2015
  • 31) Liang JN et al : Effects of augmented somato-sensory input using vibratory insoles to im-prove walking in individuals with chronic post-stroke hemiparesis. Gait Posture 86 : 77-82, 2021
  • 32) Conforto AB et al : Repetitive peripheral sen-sory stimulation and upper limb performance in stroke : A systematic review and meta-analysis. Neurorehabil Neural Repair 32(10) : 863-871, 2018
  • 33) Hall CD et al : Vestibular rehabilitation for peripheral vestibular hypofunction : An up-dated clinical practice guideline from the Academy of Neurologic Physical Therapy of the American Physical Therapy Association. J Neurol Phys Ther 46(2) : 118-177, 2022
  • 34) 平衡訓練の基準の改訂ワーキンググループ : 平衡訓練/前庭リハビリテーションの基準-2021年改訂. Equilibrium Res 80(6) : 591-599, 2021
  • 35) Iwasaki S et al : Noisy vestibular stimulation improves body balance in bilateral vestibulop-athy. Neurology 82(11) : 969-975, 2014
  • 36) Iwasaki S et al : Noisy vestibular stimulation increases gait speed in normals and in bilater-al vestibulopathy. Brain Stimul 11(4) : 709-715, 2018
  • 37) Wuehr M et al : Stochastic resonance in the human vestibular system-Noise-induced fa-cilitation of vestibulospinal reflexes. Brain Stimul 11(2) : 261-263, 2018
  • 38) Fujimoto C et al : Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6 : 37575, 2016
  • 39) Fujimoto C et al : Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9 : 900, 2018
  • 40) Eder J et al : Combining vestibular rehabilita-tion with noisy galvanic vestibular stimulation for treatment of bilateral vestibulopathy. J Neurol 269(11) : 5731-5737, 2022