~
検索条件をクリア

アブストラクト

Title SGLT2阻害薬の心保護作用とメカニズム
Subtitle 総説
Authors 桑原宏一郎
Authors (kana)
Organization 信州大学医学部 循環器内科学
Journal Therapeutic Research
Volume 43
Number 4
Page 283-293
Year/Month 2022 / 4
Article 報告
Publisher ライフサイエンス出版
Abstract 「要約」ナトリウムグルコース共輸送体2(Sodium-Glucose Cotransporter-2:SGLT2)阻害薬は, 腎臓近位尿細管に発現するSGLT2を介した原尿からのグルコース再吸収を抑制し, 血中グルコース濃度を低下させる. 当初糖尿病治療薬として開発されたが, 2型糖尿病患者を対象にした心血管アウトカム試験EMPA-REG OUTCOME試験, CANVASプログラム, DECLARE-TIMI58試験において, SGLT2阻害薬であるエンパグリフロジン, カナグリフロジン, ダパグリフロジンは一貫して心不全による入院リスクを低下させた. その後, 左室駆出率が低下した心不全(Heart Failure with reduced Ejection Fraction:HFrEF)患者を対象に実施されたDAPA-HF試験およびEMPEROR-Reduced試験において, ダパグリフロジンおよびエンパグリフロジンは, 2型糖尿病の有無にかかわらず心血管アウトカムを改善することが示された. 現在, 上記2つの薬剤は慢性心不全治療薬として承認され, 国内外のガイドラインでクラスIに位置づけられている. これと並行して, さまざまな臨床および基礎研究を通じたメカニズム研究により, SGLT2阻害薬の多面的な作用がその心不全発症・進展抑制, 予後改善に関与することが示されている. 特に重要な役割を果たしていると考えられるメカニズムは(1)利尿作用, (2)交感神経の調節作用, (3)心筋エネルギー代謝改善作用, および(4)腎保護作用である. これらの複合的な作用により, 心臓の負荷軽減, 器質的/機能的改善が促され, 臨床試験で認められたような早期からの心不全予後改善作用につながっていると考えられる.
Practice 臨床医学:一般
Keywords SGLT2阻害薬, 心不全, 心筋逆リモデリング, 作用機序
  • 全文ダウンロード: 従量制、基本料金制の方共に1,023円(税込) です。

参考文献

  • 1) 日本循環器学会/日本心不全学会合同ガイドライン. 急性・慢性心不全診療ガイドライン(2017年改訂版). 2018.
  • 2) Yasuda S, Miyamoto Y, Ogawa H. Current status of cardiovascular medicine in the aging society of Japan. Circulation 2018;138:965-7.
  • 3) Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. Empagliflozin, cardiovas-cular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015;373:2117-28.
  • 4) Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, et al. Canagliflozin and car-diovascular and renal events in type 2 diabetes. N Engl J Med 2017;377:644-57.
  • 5) Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019;380:347-57.
残りの46件を表示する
  • 6) McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in patients with heart failure and reduced ejection frac-tion. N Engl J Med 2019;381:1995-2008.
  • 7) Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and renal Out-comes with empagliflozin in heart failure. N Engl J Med 2020;383:1413-24.
  • 8) Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021;385:1451-61.
  • 9) Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 2016;375:323-34.
  • 10) Jhund PS, Solomon SD, Docherty KF, Heerspink, HJL, Anand IS, Bohm M, et al. Efficacy of dapa-gliflozin on renal function and outcomes in patients with heart failure with reduced ejection fraction: Results of DAPA-HF. Circulation 2021;143:298-309.
  • 11) Inzucchi SE, Kosiborod M, Fitchett D, Wanner C, Hehnke U, Kaspers S, et al. Improvement in cardio-vascular outcomes with empagliflozin is indepen-dent of glycemic control. Circulation 2018;138:1904-7.
  • 12) Kramer DG, Trikalinos TA, Kent DM, Antonopoulos GV, Konstam MA, Udelson JE. Quantitative evalua-tion of drug or device effects on ventricular remod-eling as predictors of therapeutic effects on mortal-ity in patients with heart failure and reduced ejec-tion fraction: A meta-analytic approach. J Am Coll Cardiol 2010;56:392-406.
  • 13) Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling-concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. J Am Coll Cardiol 2000;35:569-82.
  • 14) Konstam MA, Kramer DG, Patel AR, Maron MS, Udelson JE. Left ventricular Remodeling in Heart Failure: Current Concepts in Clinical Significance and assessment. JACC Cardiovasc Imaging 2011;4:98-108.
  • 15) Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H, et al. Effect of empagliflozin on left ventricular mass in patients with type 2 Diabetes Mellitus and coronary artery disease: The EMPA-HEART Car-dioLink-6 Randomized Clinical Trial. Circulation 2019;140:1693-702.
  • 16) Lee MMY, Brooksbank KJM, Wetherall K, Mangion K, Roditi G, Campbell RT, et al. Effect of empa-gliflozin on left ventricular volumes in patients with type 2 diabetes, or prediabetes, and heart failure with reduced ejection fraction(SUGAR-DM-HF). Circulation 2021;143:516-25.
  • 17) Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, Garcia-Ropero A, Mancini D, Pinney S, et al. Randomized trial of empagliflozin in nondia-betic patients with heart failure and reduced ejec-tion fraction. J Am Coll Cardiol 2021;77:243-55.
  • 18) Brown AJM, Gandy S, McCrimmon R, Houston JG, Struthers AD, Lang CC. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: the DAPA-LVH trial. Eur Heart J 2020;41:3421-32.
  • 19) Singh JSS, Mordi IR, Vickneson K, Fathi A, Donnan PT, Mohan M, et al. Dapagliflozin versus placebo on left ventricular remodeling in patients with diabetes and heart failure: The REFORM Trial. Diabetes Care 2020;43:1356-9.
  • 20) Zhang N, Wang Y, Tse G, Korantzopoulos P, Letsas KP, Zhang Q, et al. Effect of sodium-glucose cotransporter-2 inhibitors on cardiac remodelling: a systematic review and meta-analysis. Eur J Prev Cardiol 2021 Nov 18; zwab173. doi: 10.1093/eurjpc/zwab173.
  • 21) Yasui A, Lee G, Hirase T, Kaneko T, Kaspers S, von Eynatten M, et al. Empagliflozin induces tran-sient diuresis without changing long-term overall fluid balance in Japanese patients with type 2 diabe-tes. Diabetes Ther 2018;9:863-71.
  • 22) Nassif ME, Qintar M, Windsor SL, Jermyn R, Shavelle DM, Tang F, et al. Empagliflozin effects on pulmonary artery pressure in patients with heart failure: Results from the EMBRACE-HF Trial. Circulation 2021;143:1673-86.
  • 23) Packer M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Effect of empagliflozin on the clinical stability of patients with heart failure and a reduced ejection fraction: The EMPEROR-Reduced Trial. Circulation 2021;143:326-36.
  • 24) Packer M, Butler J, Zannad F, Filippatos G, Ferreira JP, Pocock SJ, et al. Effect of empagliflozin on wors-ening heart failure events in patients with heart fail-ure and preserved ejection fraction: EMPEROR-Preserved Trial. Circulation 2021;144:1284-94.
  • 25) ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or cal-cium channel blocker vs diuretic: The Antihyper-tensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial(ALLHAT). JAMA 2002;288:2981-97.
  • 26) PROGRESS Collaborative Group. Effects of a perin-dopril-based blood pressure lowering regimen on cardiac outcomes among patients with cerebrovas-cular disease. Eur Heart J 2003;24:475-84.
  • 27) Du X, Ninomiya T, de Galan B, Abadir E, Chalmers J, Pillai A, et al. Risks of cardiovascular events and effects of routine blood pressure lowering among patients with type 2 diabetes and atrial fibrillation: results of the ADVANCE study. Eur Heart J 2009;30:1128-35.
  • 28) Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab 2018;20:479-87.
  • 29) Mazidi M, Rezaie P, Gao H-K, Kengne AP. Effect of sodium-glucose cotransport-2 inhibitors on blood pressure in people with type 2 diabetes mellitus: A systematic review and meta-analysis of 43 random-ized control trials with 22 528 patients. J Am Heart Assoc 2017;6:e004007.
  • 30) Baker WL, Buckley LF, Kelly MS, Bucheit JD, Parod ED, Brown R, et al. Effects of sodium-glucose cotransporter 2 inhibitors on 24-hour ambulatory blood pressure: A systematic review and meta-anal-ysis. J Am Heart Assoc 2017;6:e005686.
  • 31) Lopaschuk GD, Verma S. Mechanisms of cardiovas-cular benefits of sodium glucose co-transporter 2(SGLT2)Inhibitors: A state-of-the-art review. JACC Basic Transl Sci 2020;5:632-44.
  • 32) Sano M, Chen S, Imazeki H, Ochiai H, Seino Y. Changes in heart rate in patients with type 2 diabe-tes mellitus after treatment with luseogliflozin: Sub-analysis of placebo-controlled, double-blind clinical trials. J Diabetes Investig 2018;9:638-41.
  • 33) Gueguen C, Burke SL, Barzel B, Eikelis N, Watson AMD, Jha JC, et al. Empagliflozin modulates renal sympathetic and heart rate baroreflexes in a rabbit model of diabetes. Diabetologia 2020;63:1424-34.
  • 34) Zhang N, Feng B, Ma X, Sun K, Xu G, Zhou Y. Dapa-gliflozin improves left ventricular remodeling and aorta sympathetic tone in a pig model of heart fail-ure with preserved ejection fraction. Cardiovasc Diabetol 2019;18:107.
  • 35) Matthews VB, Elliot RH, Rudnicka C, Hricova J, Herat L, Schlaich MP. Role of the sympathetic ner-vous system in regulation of the sodium glucose cotransporter 2. J Hypertens 2017;35:2059-68.
  • 36) Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol 2018;71:471-6.
  • 37) Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, et al. Short-chain fatty acids and ketones directly regulate sympathetic nervous sys-tem via G protein-coupled receptor 41(GPR41). Proc Natl Acad Sci USA 2011;108:8030-5.
  • 38) Stanley WC, Recchia FA, Lopaschuk GD. Myocar-dial substrate metabolism in the normal and failing heart. Physiol Rev 2005;85:1093-129.
  • 39) Mudaliar S, Alloju S, Henry RR. Can a shift in fuel energetics explain the beneficial cardiorenal out-comes in the EMPA-REG OUTCOME Study? A unifying hypothesis. Diabetes Care 2016;39:1115-22.
  • 40) Ingwall JS, Weiss RG. Is the failing heart energy starved? On using chemical energy to support car-diac function. Circ Res 2004;95:135-45.
  • 41) Ferrannini E, Baldi S, Frascerra S, Astiarraga B, Heise T, Bizzotto R, et al. Shift to fatty substrate uti-lization in response to sodium-glucose cotrans-porter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes 2016;65:1190-5.
  • 42) Koutnik AP, D'Agostino DP, Egan B. Anticatabolic effects of ketone bodies in skeletal muscle. Trends Endocrinol Metab 2019;30:227-9.
  • 43) Murashige D, Jang C, Neinast M, Edwards JJ, Cowan A, Hyman MC, et al. Comprehensive quanti-fication of fuel use by the failing and nonfailing human heart. Science 2020;370:364-8.
  • 44) Ho KL, Karwi QG, Wagg C, Zhang L, Vo K, Altamimi T, et al. Ketones can become the major fuel source for the heart but do not increase cardiac efficiency. Cardiovasc Res 2021;117:1178-87.
  • 45) Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, Ishikawa K, Watanabe S, Picatoste B, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhanc-ing myocardial energetics. J Am Coll Cardiol 2019;73:1931-44.
  • 46) Verma S, Rawat S, Ho KL, Wagg CS, Zhang L, Teoh H, et al. Empagliflozin increases cardiac energy pro-duction in diabetes: Novel translational insights into the heart failure benefits of SGLT2 inhibitors. JACC: Basic Transl Sci 2018;3:575-87.
  • 47) Nielsen R, Moller N, Gormsen LC, Tolbod LP, Hansson NH, Sorensen J, et al. Cardiovascular effects of treat-ment with the ketone body 3-hydroxybutyrate in chronic heart failure patients. Circulation 2019;139:2129-41.
  • 48) Horton JL, Davidson MT, Kurishima C, Vega RB, Powers JC, Matsuura TR, et al. The failing heart uti-lizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight 2019;4:e124079.
  • 49) Yurista SR, Matsuura TR, Sillje HHW, Nijholt KT, McDaid KS, Shewale SV, et al. Ketone ester treat-ment improves cardiac function and reduces patho-logic remodeling in preclinical models of heart fail-ure. Circ Heart Fail 2021;14:e007684.
  • 50) Cherney DZI, Perkins BA, Soleymanlou N, Maione M, Lai V, Lee A, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014;129:587-97.
  • 51) Tomita I, Kume S, Sugahara S, Osawa N, Yamahara K, Yasuda-Yamahara M, et al. SGLT2 inhibition mediates protection from diabetic kidney disease by promoting ketone body-induced mTORC1 inhibition. Cell Metab 2020;32:404-19.