アブストラクト
Title | Bartter症候群・Gitelman症候群・Liddle症候群・偽性低アルドステロン症II型 (PHAII) |
---|---|
Subtitle | 特集 Genetics in CKD 疾患編 |
Authors | 頼建光* |
Authors (kana) | |
Organization | *獨協医科大学腎臓・高血圧内科 |
Journal | 腎と透析 |
Volume | 94 |
Number | 3 |
Page | 440-448 |
Year/Month | 2023 / 3 |
Article | 報告 |
Publisher | 東京医学社 |
Abstract | 「はじめに」糸球体から濾過された原尿は, 近位尿細管, ヘンレ尿細管, 遠位尿細管, 集合管と順に流れる間に, その99%が再吸収される. 尿細管の細胞膜には, 水, 電解質, グルコース, アミノ酸などを再吸収するさまざまなセグメント特異的な膜輸送体やチャネル蛋白質が発現しており, 各物質の輸送過程は, それぞれの尿細管セグメントで精密に制御されている. 特に, ヘンレ上行ループ以降の遠位ネフロンには, ナトリウムの再吸収を制御する重要なトランスポーター・チャネルが多数発現しており, その機能障害は血圧や水・電解質の恒常性異常の原因となる. 本稿では, 遠位ネフロンにおけるトランスポーター異常に起因する疾患であるBartter症候群・Gitelman症候群, Liddle症候群, 偽性低アルドステロン症II型(PHAII)に関する最新の知見について概説する. 「I Bartter症候群・Gitelman症候群」「1. 概念」Bartter症候群およびGitelman症候群は, 代謝性アルカローシスと低カリウム血症を呈する遺伝性尿細管疾患である. |
Practice | 臨床医学:内科系 |
Keywords | 上皮型Naチャネル(ENaC), Na+-K+-2Cl-共輸送体(NKCC2), Na+-Cl-共輸送体(NCC), WNKキナーゼ |
- 全文ダウンロード: 従量制、基本料金制の方共に1,023円(税込) です。
参考文献
- 1) Seyberth HW : An improved terminology and classi-fication of Bartter-like syndromes. Nat Clin Pract Nephrol 4 : 560-567, 2008
- 2) Simon DB, Karet FE, Hamdan JM, et al : Bartter's syndrome, hypokalaemic alkalosis with hypercalci-uria, is caused by mutations in the Na-K-2Cl cotrans-porter NKCC2. Nat Genet 13 : 183-188, 1996
- 3) Simon DB, Karet FE, Rodriguez-Soriano J, et al : Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 14 : 152-156, 1996
- 4) Simon DB, Bindra RS, Mansfield TA, et al : Mutations in the chloride channel gene, CLCNKB, cause Bart-ter's syndrome type III. Nat Genet 17 : 171-178, 1997
- 5) Simon DB, Nelson-Williams C, Bia MJ, et al : Gitel-man's variant of Bartter's syndrome, inherited hypo-kalaemic alkalosis, is caused by mutations in the thia-zide-sensitive Na-Cl cotransporter. Nat Genet 12 : 24-30, 1996
残りの40件を表示する
- 6) Birkenhager R, Otto E, Schurmann MJ, et al : Muta-tion of BSND causes Bartter syndrome with sensori-neural deafness and kidney failure. Nat Genet 29 : 310-314, 2001
- 7) Estevez R, Boettger T, Stein V, et al : Barttin is a Cl- channel β-subunit crucial for renal Cl- reabsorption and inner ear K+ secretion. Nature 414 : 558-561, 2001
- 8) Watanabe S, Fukumoto S, Chang H, et al : Association between activating mutations of calcium-sensing receptor and Bartter's syndrome. Lancet 360 : 692-694, 2002
- 9) 頼 建光 : 尿細管におけるクロライド(Cl-)の動態. 腎と透析 90 : 714-723, 2021
- 10) Nozu K, Iijima K, Kanda K, et al : The pharmacologi-cal characteristics of molecular-based inherited salt-losing tubulopathies. J Clin Endocrinol Metab 95 : E511-E518, 2010
- 11) Mori T, Hosomichi K, Chiga M, et al : Comprehensive genetic testing approach for major inherited kidney diseases, using next-generation sequencing with a custom panel. Clin Exp Nephrol 21 : 63-75, 2017
- 12) Canessa CM, Horisberger JD, Rossier BC : Epithelial sodium channel related to proteins involved in neuro-degeneration. Nature 361 : 467-470, 1993
- 13) Shimkets RA, Warnock DG, Bositis CM, et al : Liddle's syndrome : heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79 : 407-414, 1994
- 14) Hansson JH, Nelson-Williams C, Suzuki H, et al : Hypertension caused by a truncated epithelial sodium channel gamma subunit : genetic heterogeneity of Liddle syndrome. Nat Genet 11 : 76-82, 1995
- 15) Tetti M, Monticone S, Burrello J, et al : Liddle syn-drome : review of the literature and description of a new case. Int J Mol Sci 19 : 812, 2018
- 16) Staub O, Dho S, Henry P, et al : WW domains of Nedd4 bind to the proline-rich PY motifs in the epi-thelial Na+ channel deleted in Liddle's syndrome. EMBO J 15 : 2371-2380, 1996
- 17) Abriel H, Loffing J, Rebhun JF, et al : Defective regu-lation of the epithelial Na+ channel by Nedd4 in Lid-dle's syndrome. J Clin Invest 103 : 667-673, 1999
- 18) Salih M, Gautschi I, van Bemmelen MX, et al : A mis-sense mutation in the extracellular domain of αENaC causes Liddle syndrome. J Am Soc Nephrol 28 : 3291-3299, 2017
- 19) Debonneville C, Flores SY, Kamynina E, et al : Phos-phorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J 20 : 7052-7059, 2001
- 20) Snyder PM, Olson DR, Thomas BC : Serum and glu-cocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na+ channel. J Biol Chem 277 : 5-8, 2002
- 21) Kellenberger S, Gautschi I, Rossier BC, et al : Muta-tions causing Liddle syndrome reduce sodium-dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest 101 : 2741-2750, 1998
- 22) Wilson FH, Disse-Nicodeme S, Choate KA, et al : Human hypertension caused by mutations in WNK kinases. Science 293 : 1107-1112, 2001
- 23) Yang SS, Morimoto T, Rai T, et al : Molecular patho-genesis of pseudohypoaldosteronism type II : gener-ation and analysis of a Wnk4D561A/+knockin mouse model. Cell Metab 5 : 331-344, 2007
- 24) Ohta A, Rai T, Yui N, et al : Targeted disruption of the Wnk4 gene decreases phosphorylation of Na-Cl cotransporter, increases Na excretion and lowers blood pressure. Hum Mol Genet 18 : 3978-3986, 2009
- 25) Chiga M, Rafiqi FH, Alessi DR, et al : Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade. J Cell Sci 124 : 1391-1395, 2011
- 26) Boyden LM, Choi M, Choate KA, et al : Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature 482 : 98-102, 2012
- 27) Louis-Dit-Picard H, Barc J, Trujillano D, et al : KLHL3 mutations cause familial hyperkalemic hypertension by impairing ion transport in the distal nephron. Nat Genet 44 : 456-460, 2012
- 28) Ohta A, Schumacher FR, Mehellou Y, et al : The CUL3-KLHL3 E3 ligase complex mutated in Gordon's hypertension syndrome interacts with and ubiqui-tylates WNK isoforms : disease-causing mutations in KLHL3 and WNK4 disrupt interaction. Biochem J 451 : 111-122, 2013
- 29) Wakabayashi M, Mori T, Isobe K, et al : Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep 3 : 858-868, 2013
- 30) Shibata S, Zhang J, Puthumana J, et al : Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc Natl Acad Sci USA 110 : 7838-7843, 2013
- 31) Wu G, Peng JB : Disease-causing mutations in KLHL3 impair its effect on WNK4 degradation. FEBS Lett 587 : 1717-1722, 2013
- 32) Susa K, Sohara E, Rai T, et al : Impaired degradation of WNK1 and WNK4 kinases causes PHAII in mutant KLHL3 knock-in mice. Hum Mol Genet 23 : 5052-5060, 2014
- 33) Osawa M, Ogura Y, Isobe K, et al : CUL3 gene analy-sis enables early intervention for pediatric pseudohy-poaldosteronism type II in infancy. Pediatr Nephrol 28 : 1881-1884, 2013
- 34) Tsuji S, Yamashita M, Unishi G, et al : A young child with pseudohypoaldosteronism type II by a muta-tion of Cullin 3. BMC Nephrol 14 : 166, 2013
- 35) Schumacher FR, Siew K, Zhang J, et al : Characterisa-tion of the Cullin-3 mutation that causes a severe form of familial hypertension and hyperkalaemia. EMBO Mol Med 7 : 1285-1306, 2015
- 36) Ibeawuchi SR, Agbor LN, Quelle FW, et al : Hyper-tension-causing mutations in Cullin3 protein impair RhoA protein ubiquitination and augment the associ-ation with substrate adaptors. J Biol Chem 290 : 19208-19217, 2015
- 37) Araki Y, Rai T, Sohara E, et al : Generation and analysis of knock-in mice carrying pseudohypoaldo-steronism type II-causing mutations in the cullin 3 gene. Biol Open 4 : 1509-1517, 2015
- 38) Wang Y, O'Connell JR, McArdle PF, et al : Whole-genome association study identifies STK39 as a hypertension susceptibility gene. Proc Natl Acad Sci USA 106 : 226-231, 2009
- 39) Cao FF, Zhang HX, Wang F, et al : Association of the C1155547T polymorphism in WNK4 gene with essen-tial hypertension in Xinjiang Kazakhs. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 27 : 546-549, 2010[Chi-nese]
- 40) Mandai S, Mori T, Sohara E, et al : Generation of hypertension-associated STK39 polymorphism knockin cell lines with the clustered regularly interspaced short palindromic repeats/Cas9 system. Hypertension 66 : 1199-1206, 2015
- 41) Sohara E, Rai T, Yang SS, et al : Acute insulin stimu-lation induces phosphorylation of the Na-Cl cotrans-porter in cultured distal mpkDCT cells and mouse kidney. PLoS One 6 : e24277, 2011
- 42) Chen J, Gu D, Huang J, et al : Metabolic syndrome and salt sensitivity of blood pressure in non-diabetic people in China : a dietary intervention study. Lancet 373 : 829-835, 2009
- 43) Zeniya M, Morimoto N, Takahashi D, et al : Kelch-like protein 2 mediates angiotensin II-with no lysine 3 signaling in the regulation of vascular tonus. J Am Soc Nephrol 26 : 2129-2138, 2015
- 44) Mori T, Kikuchi E, Watanabe Y, et al : Chemical library screening for WNK signalling inhibitors using fluorescence correlation spectroscopy. Biochem J 455 : 339-345, 2013
- 45) Kikuchi E, Mori T, Zeniya M, et al : Discovery of novel SPAK inhibitors that block WNK kinase sig-naling to cation chloride transporters. J Am Soc Nephrol 26 : 1525-1536, 2015