~
検索条件をクリア

アブストラクト

Title SGLT2阻害薬
Subtitle 特集 腎障害の進展防止 - 病態から治療まで 【トピックス】
Authors 冨田彩**, 亀崎通嗣**, 草場哲郎**
Authors (kana)
Organization **京都府立医科大学 腎臓内科
Journal 腎と透析
Volume 88
Number 6
Page 829-834
Year/Month 2020 / 6
Article 報告
Publisher 東京医学社
Abstract 「はじめに」世界的に糖尿病患者は増加傾向にあり, 2045年には全世界で約6億2,900万人に及ぶと国際糖尿病連盟は指摘している. これまでの糖尿病治療では, 腎保護効果を期待して, 血糖降下療法に加えレニン-アンジオテンシン系(RAS)抑制薬やスタチンの投与が行われているが, 25年前と比し微量アルブミン尿を有する患者の割合は低下している一方で, 腎機能障害を有する患者の割合は増加している. これは高齢化なども影響しているが, 既存の糖尿病治療では末期腎不全に至る患者を十分に抑制できていないことを示している. 近年登場したSGLT2阻害薬は, 尿糖排泄促進により血糖降下作用を発揮し, 大規模臨床試験において心血管疾患の発症予防効果, 腎疾患の進展予防効果が示された. 本稿では, SGLT2分子の概略, その阻害薬の作用機序に加え, 近年明らかになってきている腎保護効果を大規模臨床研究と基礎研究の双方の面から概説する.
Practice 臨床医学:内科系
Keywords SGLT2阻害薬, 糖尿病性腎症, 酸化ストレス, 糸球体過剰濾過, 低酸素
  • 全文ダウンロード: 従量制、基本料金制の方共に1,023円(税込) です。

参考文献

  • 1) Afkarian M, Zelnick LR, Hall YN, et al:Clinical manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA 316:602-610,2016
  • 2) Abdul-Ghani MA, DeFronzo RA, Norton L:Novel hypothesis to explain why SGLT2 inhibitors inhibit only 30-50% of filtered glucose load in humans. Dia-betes 62:3324-3328,2013
  • 3) Ghezzi C, Yu AS, Hirayama BA, et al:Dapagliflozin binds specifically to sodium-glucose cotransporter 2 in the proximal renal tubule. J Am Soc Nephrol 28:802-810,2017
  • 4) Wanner C, Inzucchi SE, Lachin JM, et al:Empa-gliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323-334,2016
  • 5) Neal B, Perkovic V, Mahaffey KW, et al:Canagliflozin and cardiovascular and renal events in type 2 diabe-tes. N Engl J Med 377:644-657,2017
残りの18件を表示する
  • 6) Wiviott SD, Raz I, Bonaca MP, et al:Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347-357,2019
  • 7) Perkovic V, Jardine MJ, Neal B, et al:Canagliflozin and renal outcomes in type 2 diabetes and nephropa-thy. N Engl J Med 380:2295-2306,2019
  • 8) McMurray JJV, Solomon SD, Inzucchi SE, et al:Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995-2008,2019
  • 9) Herrington WG, Preiss D, Haynes R, et al:The poten-tial for improving cardio-renal outcomes by sodium-glucose co-transporter-2 inhibition in people with chronic kidney disease: a rationale for the EMPA-KIDNEY study. Clin Kidney J 11:749-761,2018
  • 10) Heerspink HJ, Perkins BA, Fitchett DH, et al:Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus:cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circu-lation 134:752-772,2016
  • 11) Kamezaki M, Kusaba T, Komaki K, et al:Compre-hensive renoprotective effects of ipragliflozin on early diabetic nephropathy in mice. Sci Rep 8:4029,2018
  • 12) Kidokoro K, Cherney DZI, Bozovic A, et al:Evalua-tion of glomerular hemodynamic function by empa-gliflozin diabetic mice using in vivo imaging. Cir-culation 140:303-315,2019
  • 13) Korner A, Eklof AC, Celsi G, et al:Increased renal metabolism in diabetes. Mechanism and functional implications. Diabetes 43:629-633,1994
  • 14) Takiyama Y, Sera T, Nakamura M, et al:Impacts of diabetes and an SGLT2 inhibitor on the glomerular number and volume in db / db mice, as estimated by Synchrotron Radiation Micro-CT at SPring-8. EBio-Medicine 36:329-346,2018
  • 15) O'Neill J, Fasching A, Pihl L, et al:Acute SGLT inhi-bition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Renal Physiol 309:F227-F234,2015
  • 16) Rieg T, Masuda T, Gerasimova M, et al:Increase in SGLT1-mediated transport explains renal glucose reabsorption during genetic and pharmacological SGLT2 inhibition in euglycemia. Am J Physiol Renal Physiol 306:F188-F193,2014
  • 17) Yamazaki S, Souma T, Hirano I, et al: A mouse model of adult-onset anaemia due to erythropoietin defi-ciency. Nat Commun 4:1950,2013
  • 18) Lambers Heerspink HJ, de Zeeuw D, Wie L, et al:Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853-862,2013
  • 19) Umino H, Hasegawa K, Minakuchi H, et al:High basolateral glucose increases sodium-glucose cotransporter 2 and reduces sirtuin-1 in renal tubules through glucose transporter-2 detection. Sci Rep 8:6791,2018
  • 20) Coady MJ, El Tarazi A, Santer R, et al:MAP17 is a necessary activator of renal Na+ / glucose cotrans-porter SGLT2. J Am Soc Nephrol 28:85-93,2017
  • 21) Kitada M, Ogura Y, Koya D:Rodent models of dia-betic nephropathy:their utility and limitations. Int J Nephrol Renovasc Dis 9:279-290,2016
  • 22) Zhang Y, Thai K, Kepecs DM, et al:Sodium-glucose linked cotransporter-2 inhibition does not attenuate disease progression in the rat remnant kidney model of chronic kidney disease. PLoS One 11:e0144640,2016
  • 23) Li L, Konishi Y, Morikawa T, et al:Effect of a SGLT2 inhibitor on the systemic and intrarenal renin-angio-tensin system in subtotally nephrectomized rats. J Pharmacol Sci 137:220-223,2018