アブストラクト
Japanese
Title | 慢性腎臓病と糖尿病性腎臓病の治療 |
---|---|
Subtitle | 特集 マイクロバイオーム創薬研究とその将来展望 |
Authors | 阿部高明1,2,3 |
Authors (kana) | |
Organization | 東北大学 1医工学研究科, 2医学系研究科, 3AMED ムーンショットプログラム |
Journal | 日本薬理学雑誌 |
Volume | 158 |
Number | 4 |
Page | 319-325 |
Year/Month | 2023 / 7 |
Article | 報告 |
Publisher | 日本薬理学会 |
Abstract | 腎不全に至る主要原疾患である糖尿病性腎臓病(DKD)への介入が重要視されているが, どの糖尿病患者がDKDを発症しあるいは進行してゆくかを占う指標として, eGFRや尿中アルブミンだけは不十分であり新たな指標が求められている. 糖尿病患者の体内や腸管内では様々な代謝物が合成されその病態に影響している. 我々はDKDのマーカーかつ原因候補代謝物としてフェニル硫酸(PS)を同定した. 食事中のチロシンは腸内細菌によってフェノールに変換され, 肝臓で硫酸抱合されることでPSとなり, 尿中に排泄される. 従って腎不全患者ではPSの血中濃度は高い. しかしPSは腎機能が正常でも糖尿病下ではその産生が増加しており, ポドサイト障害を惹起してアルブミン尿を増加させる. 糖尿病患者コホート(U-CARE, n=362)の解析からPSはアルブミン尿と相関し, 特に微量アルブミン群患者において2年後のアルブミン尿増悪と相関していた. さらにフェノールを産生する腸内細菌の酵素を阻害すると, 蛋白尿の減少と腎機能の改善が認められた. PSは100%腸内細菌が作るフェノールからできる代謝物であり各種腸内環境の介入によるPSの血中濃度の低下はDKDの新規かつより安全な治療法である可能性が示唆された. |
Practice | 薬学 |
Keywords | 慢性腎臓病, 糖尿病性腎症, 腸内細菌, フェノール, フェニル硫酸, チロシン |
English
Title | Therapy for CKD and DKD |
---|---|
Subtitle | Reviews : Drug Discovery Research on Microbiome and Its Future Outlook |
Authors | Takaaki Abe1,2,3 |
Authors (kana) | |
Organization | 1Division of Medical Science, Tohoku University Graduate School of Biomedical Engineering, 2Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, 3AMED Moon Program Manager |
Journal | Folia Pharmacologica Japonica |
Volume | 158 |
Number | 4 |
Page | 319-325 |
Year/Month | 2023 / 7 |
Article | Report |
Publisher | The Japanese Pharmacological Society |
Abstract | [Abstract.] Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Specific remedies are needed for preventing Type 2 diabetes which causes significant changes in an array of plasma metabolites. By untargeted metabolome analysis, phenyl sulfate (PS) increased with the progression of diabetes. In experimental diabetes models, PS administration induces albuminuria and podocyte damage due to the mitochondrial dysfunction. By clinical diabetic kidney disease (DKD) cohort analysis, it was also confirmed that the PS levels significantly correlate with basal and predicted 2-year progression of albuminuria. Phenol is synthesized from dietary tyrosine by gut bacterial-specific tyrosine phenol-lyase (TPL), and absorbed phenol is metabolized into PS in the liver. Inhibition of TPL reduces not only the circulating PS level but also albuminuria in diabetic mice. TPL inhibitor did not significantly alter the major composition, showing the non-lethal inhibition of microbial-specific enzymes has a therapeutic advantage, with lower selective pressure for the development of drug resistance. Clinically, 362 patients in a multi-center clinical study in diabetic nephropathy cohort (U-CARE) were analyzed with full data. The basal plasma PS level significantly correlated with ACR, eGFR, age, duration, HbA1c and uric acid, but not with suPAR. Multiple regression analysis revealed that ACR was the only factor that significantly correlated with PS. By stratified logistic regression analysis, in the microalbuminuria group, PS was the only factor related to the amount of change in the 2-year ACR in all models. PS is not only an early diagnosis marker, but also a modifiable cause and therefore a target for the treatment of DKD. Reduction of microbiota-derived phenol by the inhibitor should represent another aspect for developing drugs of DKD prevention. |
Practice | Pharmaceutical sciences |
Keywords |
- 全文ダウンロード: 従量制、基本料金制の方共に770円(税込) です。
参考文献
- 1) 職場の安全サイト. https://anzeninfo.mhlw.go.jp/anzen/gmsds/0061.html
- 2) 久保田 高吉. 東洋実業家評伝. 第2編. 博交館. 1893-1894. p.192-193.
- 3) 正露丸ホームページ. https://www.seirogan.co.jp/medical/creosote/safety.html
- 4) Pierce WM Jr, et al. J Anal Toxicol. 1988;12:344-347.
- 5) Abe M, et al. Drug Metab Pharmacokinet. 2010;25:274-282.
残りの52件を表示する
- 6) 山崎吉郎. 岡山医学会雑誌. 1981;93:845-849.
- 7) Vaziri ND, et al. Kidney Int. 2013;83:308-315.
- 8)Anders HJ, et al. Kidney Int. 2013;83:1010-1016.
- 9) Vanholder R, et al. Pediatr Nephrol. 2008;23:1211-1221.
- 10) Lekawanvijit S, et al. PloS One. 2012;7:e41281.
- 11) Vanholder R, et al. J Am Soc Nephrol. 1999;10:1815-1823.
- 12) Vanholder R, et al. Lancet Diabetes Endocrinol. 2016;4:360-373.
- 13) Barreto FC, et al. Clin J Am Soc Nephrol. 2009;4:1551-1558.
- 14) Liabeuf S, et al. Nephrol Dial Transplant. 2010;25:1183-1191.
- 15) Koeth RA, et al. Nat Med. 2013;19:576-585.
- 16) Lekawanvijit S, et al. Am J Physiol Renal Physiol. 2016;311:F52-F62.
- 17) Kalantar-Zadeh K, et al. N Engl J Med. 2017;377:1765-1776.
- 18) Sumida K, et al. J Am Soc Nephrol. 2017;28:1248-1258.
- 19) Sumida K, et al. Kidney Int Rep. 2020;5:121-134.
- 20) Roager HM, et al. Nat Microbiol. 2016;1:16093.
- 21) Mishima E, et al.J Am Soc Nephrol. 2015;26:1787-1794.
- 22) Nanto-Hara F, et al. Nephrol Dial Transplant. 2020;35:250-264.
- 23) Sueyoshi M, et al. Clin Exp Nephrol. 2019;23:908-919.
- 24) Knip M, et al. Nat Rev Endocrinol. 2016;12:154-167.
- 25) Qin J, et al. Nature. 2012;490:55-60.
- 26) Vaziri ND, et al. Nephrol Dial Transplant. 2016;31:737-746.
- 27) Ramezani A, et al. Am J Kidney Dis. 2016;67:483-498.
- 28) Tao S, et al. Acta Diabetol. 2019;56:581-592.
- 29) Mikkaichi T, et al. Proc Natl Acad Sci U S A. 2004;101:3569-3574.
- 30) Toyohara T, et al. J Am Soc Nephrol. 2009;20:2546-2555.
- 31) Kikuchi K, et al. Nat Commun. 2019;10:1835.
- 32) Mishima E, et al. Kidney Int. 2017;92:634-645.
- 33) Niewczas MA, et al. Diabetes Care. 2017;40:383-390.
- 34) Oikawa D, et al. Biochem Biophys Res Commun. 2022;590:158-162.
- 35) Mishima E, et al. Am J Physiol Renal Physiol. 2018;315:F824-F833.
- 36) Ho HJ, et al. Physiol Rep. 2021;9:e15092.
- 37) Akiyama Y, et al. Toxins. 2012;4:1309-1322.
- 38) Kikuchi M, et al. Nephron. 2017;135:51-60.
- 39) Yoshifuji A, et al. Clin Exp Nephrol. 2018;22:1069-1078.
- 40) Yamamoto S, et al. Sci Rep. 2015;5:14381.
- 41) Akizawa T, et al. Am J Kidney Dis. 2009;54:459-467.
- 42) Schulman G, et al. BMC Nephrol. 2016;17:141.
- 43) Schulman G, et al. J Am Soc Nephrol. 2015;26:1732-1746.
- 44) Konishi K, et al. Diabetes Res Clin Pract. 2008;81:310-315.
- 45) Ramezani A, et al. J Am Soc Nephrol. 2014;25:657-670.
- 46) Armani RG, et al. Curr Hypertens Rep. 2017;19:29.
- 47) Taki K, et al. J Ren Nutr. 2005;15:77-80.
- 48) Wang IK, et al. Benef Microbes. 2015;6:423-430.
- 49) Pavan M. Minerva Urol Nefrol. 2016;68:222-226.
- 50) Nakabayashi I, et al. Nephrol Dial Transplant. 2011;26:1094-1098.
- 51) Cruz-Mora J, et al. J Ren Nutr. 2014;24:330-335.
- 52) Salmean YA, et al. J Ren Nutr. 2013;23:e29-e32.
- 53) Meijers BK, et al. Nephrol Dial Transplant. 2010;25:219-224.
- 54) Furuse SU, et al. Physiol Rep. 2014;2:e12029.
- 55) Vaziri ND, et al. PloS One. 2014;9:e114881.
- 56) 森 浩晴. 日本栄養・食糧学会誌. 1993;46:129-145.
- 57) Saito Y, et al. FEMS Microbiol Ecol. 2018;94:fiy125.