アブストラクト
Japanese
Title | COVID-19に伴う全身性炎症反応性微小血管内皮症 (systemic inflammatory-reactive microvascular endotheliopathy, SIRME) の一論考 : 循環器病予防と新型コロナウイルス感染症 |
---|---|
Subtitle | 特別寄稿 |
Authors | 東條美奈子*1,2 |
Authors (kana) | |
Organization | *1北里大学医療衛生学部 リハビリテーション学科, *2北里大学大学院医療系研究科 循環器内科学 / 機能回復学 |
Journal | 日本循環器病予防学会誌 |
Volume | 55 |
Number | 2 |
Page | 73-86 |
Year/Month | 2020 / 9 |
Article | 報告 |
Publisher | 日本循環器病予防学会 |
Abstract | 「要約」新型コロナウイルス感染症(the new coronavirus disease 2019:COVID-19)パンデミックは私たちの生活を根本的に変えてしまった. 今後も続いていくであろう「new-normal with corona(コロナと共存する新常態)」の時代を生き抜いていくためには, これまでの先人の多くの叡智を集約し, より高次の視点から本感染症の病態を深く理解し, コロナ禍においてより鮮明化した医療を含めた社会的な問題点を1つ1つ改善していくことが必要である. 本稿では, COVID-19の病態生理において鍵を握ると考えられる微小血管内皮障害に着目し, これまでに得られている知見をまとめ, 本メカニズムのCOVID-19重症化の予防や診断・治療への関与について論じる. 高血圧, 糖尿病, 肥満, 循環器疾患などの患者において, COVID-19による死亡率が高いことが報告されている. また高齢者や喫煙者ではCOVID-19が重症化しやすいことも明らかになっている. これらの危険因子は血管内皮機能を低下させることが知られており, いずれも循環器病予防における重要なターゲットである. 一方で, 全身をめぐる血管内皮細胞を覆う細胞外マトリックスである血管内皮グリコカリックスはこれらの危険因子によって障害される. さらにCOVID-19の原因ウイルスであるsevere acute respiratory syndrome coronavirus 2(SARS-CoV-2)はヒトの肺胞上皮や小腸だけでなく, 血管内皮細胞や血管平滑筋細胞に豊富に発現するangiotensin-converting enzyme 2(ACE2)受容体に結合することから, COVID-19を悪化させるメカニズムに血管内皮グリコカリックスが重要な働きを担っている可能性が示唆される. 重症COVID-19によって引き起こされる, 急性呼吸窮迫症候群(acute respiratory distress syndrome:ARDS), 播種性血管内凝固(disseminated intravascular coagulation:DIC), 川崎病ショック症候群, 敗血症などの重篤な病態においては, 可溶性血管内皮グリコカリックスの血中濃度が異常高値となることが多数報告されており, より高値の症例においては全身性血栓塞栓症や多臓器不全を引き起こしやすいことが知られている. 循環器病予防のための取り組みや疾病管理対策は, COVID-19重症化予防やパンデミック時の医療体制堅持などの観点からも非常に重要であることが明らかになりつつある. 将来を見据えた, より広義での循環器病予防活動は, 今後, 迫りくるであろう第二波, 第三波のCOVID-19重症化予防策としても有効な武器になり得るものと期待している. |
Practice | 公衆衛生学 |
Keywords | SARS-CoV-2, サイトカイン・ストーム, ARDS, 川崎病, 危険因子, 循環器疾病管理, cytokine storm, acute respiratory distress syndrome, Kawasaki disease, risk, factor, cardiovascular disease management |
English
Title | A note on systemic inflammatory-reactive microvascular endotheliopathy (SIRME) : Prevention of cardiovascular disease and COVID-19 |
---|---|
Subtitle | Special Contribution |
Authors | Minako Yamaoka-Tojo*1,2 |
Authors (kana) | |
Organization | *1Department of Rehabilitation, Kitasato University School of Allied Health Sciences, *2 Department of Cardiovascular Medicine, Kitasato University Graduate School of Medical Sciences |
Journal | Japanese Journal of Cardiovascular Disease Prevention |
Volume | 55 |
Number | 2 |
Page | 73-86 |
Year/Month | 2020 / 9 |
Article | Report |
Publisher | The Japanese Society of Cardiovascular Disease Prevention |
Abstract | The new coronavirus disease 2019 (COVID-19) pandemic has fundamentally changed our lives. To survive in the era of "new-normal with corona" that will continue in the foreseeable, it is necessary to deeply understand the pathophysiology of the infectious disease to improve various social problems, including cardiovascular disease management, during the COVID-19 pandemic. In this review, the author focuses on microvascular endothelial damage, which is the key to the pathophysiology of COVID-19, proposes a new concept called "systemic inflammatory-reactive microvascular endotheliopathy (SIRME)" induced by COVID-19, and presents a definition for SIRME. High mortality rates have been reported in patients with hypertension, diabetes, obesity, and cardiovascular disease who were infected with COVID-19. The disease also is more likely to become severe in elderly people and smokers. These risk factors are known to reduce vascular endothelial function, and all are important targets in cardiovascular disease prevention. On the other hand, vascular endothelial glycocalyx, an extracellular matrix that covers vascular endothelial cells throughout the body, is impaired by these risk factors. Furthermore, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative virus of COVID-19, binds to the angiotensin-converting enzyme 2 receptor, which is abundantly expressed in vascular endothelial cells and vascular smooth muscle cells as well as in human alveolar epithelium and small intestine. Vascular endothelial glycocalyx may have an important role in the mechanism that exacerbates COVID-19. Under severe conditions, such as acute respiratory distress syndrome, disseminated intravascular coagulation, Kawasaki disease shock syndrome, and sepsis caused by severe COVID-19, circulating levels of soluble vascular endothelial glycocalyx are dramatically increased. It is known that systemic thromboembolism and multiple organ failure are likely to occur in patients with a high level of fragmented circulating vascular endothelial glycocalyx. It is becoming clear that efforts to prevent cardiovascular disease and implement disease control measures are very important from the perspective of lessening the severity of COVID-19 and not overwhelming health care systems during a pandemic. We anticipate that a broader set of cardiovascular disease prevention activities will need to be established as preventive measures against COVID-19 aggravation in the second and third pandemic waves that will soon be approaching. |
Practice | Public Health |
Keywords | SARS-CoV-2, cytokine storm, acute respiratory distress syndrome, Kawasaki disease, risk, factor, cardiovascular disease management |
- 全文ダウンロード: 従量制、基本料金制の方共に770円(税込) です。
参考文献
- 1) Guan WJ, Ni ZY, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382: 1708-1720.
- 2) Giannis D, Ziogas IA, Gianni P. Coagulation disor-ders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020; 127: 104362.
- 3) Wichmann D, Sperhake JP, Lutgehetmann M, et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann Intern Med 2020.
- 4) Piccolo V, Neri I, Filippeschi C, et al. Chilblain-like lesions during COVID-19 epidemic: a preliminary study on 63 patients. J Eur Acad Dermatol Vene-reol 2020; 34(7): e291-e293.
- 5) Richardson S, Hirsch JS, Narasimhan M, et al. Pre-senting Characteristics, Comorbidities, and Out-comes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020; 323(20): 2052-2059.
残りの85件を表示する
- 6) Cosgun ZC, Fels B, Kusche-Vihrog K. Nanomechan-ics of the Endothelial Glycocalyx: From Structure to Function. Am J Pathol 2020; 190: 732-741.
- 7) Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional recep-tor for SARS coronavirus. A first step in under-standing SARS pathogenesis. J Pathol 2004; 203: 631-637.
- 8) American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: defi-nitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 1992; 20: 864-874.
- 9) Tang N, Li D, Wang X, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18: 844-847.
- 10) Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181: 271-280 e8.
- 11) Zhou L, Xu Z, Castiglione GM, et al. ACE2 and TMPRSS2 are expressed on the human ocular sur-face, suggesting susceptibility to SARS-CoV-2 infec-tion. Ocul Surf 2020; 18(4): 537-544.
- 12) Butler PJ, Bhatnagar A. Mechanobiology of the abluminal glycocalyx. Biorheology 2019; 56: 101-112.
- 13) Betteridge KB, Arkill KP, Neal CR, et al. Sialic acids regulate microvessel permeability, revealed by novel in vivo studies of endothelial glycocalyx structure and function. J Physiol 2017; 595: 5015-5035.
- 14) Butler MJ, Ramnath R, Kadoya H, et al. Aldosterone induces albuminuria via matrix metalloproteinase-dependent damage of the endothelial glycocalyx. Kidney Int 2019; 95: 94-107.
- 15) Curry FR. Microvascular solute and water trans-port. Microcirculation 2005; 12: 17-31.
- 16) Curry FE. Layer upon layer: the functional conse-quences of disrupting the glycocalyx-endothelial barrier in vivo and in vitro. Cardiovasc Res 2017; 113: 559-561.
- 17) Ueda A, Shimomura M, Ikeda M, et al. Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am J Physiol Heart Circ Physiol 2004; 287: H2287-H2294.
- 18) Thi MM, Tarbell JM, Weinbaum S, et al. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a "bumper-car" model. Proc Natl Acad Sci USA 2004; 101: 16483-16488.
- 19) Koo A, Dewey CF, Jr., Garcia-Cardena G. Hemody-namic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J physiol Cell Physiol 2013; 304: C137-C146.
- 20) Bar A, Targosz-Korecka M, Suraj J, et al. Degrada-tion of Glycocalyx and Multiple Manifestations of Endothelial Dysfunction Coincide in the Early Phase of Endothelial Dysfunction Before Athero-sclerotic Plaque Development in Apolipoprotein E/Low-Density Lipoprotein Receptor-Deficient Mice. J Am Heart Assoc 2019; 8: e011171.
- 21) Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006; 290: H2247-H2256.
- 22) Abassi Z, Armaly Z, Heyman SN. Glycocalyx Deg-radation in Ischemia-Reperfusion Injury. Am J Pathol 2020; 190: 752-767.
- 23) Nieuwdorp M, Meuwese MC, Vink H, et al. The endothelial glycocalyx: a potential barrier between health and vascular disease. Curr Opin Lipidol 2005; 16: 507-511.
- 24) Nieuwdorp M, Meuwese MC, Mooij HL, et al. Tumor necrosis factor-alpha inhibition protects against endotoxin-induced endothelial glycocalyx perturbation. Atherosclerosis 2009; 202: 296-303.
- 25) Ko J, Kang HJ, Kim DA, et al. Uric acid induced the phenotype transition of vascular endothelial cells via induction of oxidative stress and glycoca-lyx shedding. FASEB J 2019; 33: 13334-13345.
- 26) Zuurbier CJ, Demirci C, Koeman A, et al. Short-term hyperglycemia increases endothelial glycoca-lyx permeability and acutely decreases lineal den-sity of capillaries with flowing red blood cells. J Appl Physiol(1985) 2005; 99: 1471-1476.
- 27) Pahwa R, Nallasamy P, Jialal I. Toll-like receptors 2 and 4 mediate hyperglycemia induced macrovas-cular aortic endothelial cell inflammation and per-turbation of the endothelial glycocalyx. J Diabetes Complications 2016; 30: 563-572.
- 28) Rorije NMG, Rademaker E, Schrooten EM, et al. High-salt intake affects sublingual microcirculation and is linked to body weight change in healthy volunteers: a randomized cross-over trial. J Hyper-tens 2019; 37: 1254-1261.
- 29) Vink H, Constantinescu AA, Spaan JA. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 2000; 101: 1500-1502.
- 30) Ostrowski SR, Gaini S, Pedersen C, et al. Sympa-thoadrenal activation and endothelial damage in patients with varying degrees of acute infectious disease: an observational study. J Crit Care 2015; 30: 90-96.
- 31) Ohnishi Y, Yasudo H. Suzuki Y, et al. Circulating endothelial glycocalyx components as a predictive marker of coronary artery lesions in Kawasaki dis-ease. Int J Cardiol 2019; 292: 236-240.
- 32) Weissgerber TL, Garcia-Valencia O, Milic NM, et al. Early Onset Preeclampsia Is Associated With Gly-cocalyx Degradation and Reduced Microvascular Perfusion. J Am Heart Assoc 2019; 8: e010647.
- 33) Long DS, Hou W, Taylor RS, et al. Serum levels of endothelial glycocalyx constituents in women at 20 weeks' gestation who later develop gestational diabetes mellitus compared to matched controls: a pilot study. BMJ Open 2016; 6: e011244.
- 34) Steppan J, Hofer S, Funke B, et al. Sepsis and major abdominal surgery lead to flaking of the endothelial glycocalix. J Surg Res 2011; 165: 136-141.
- 35) Chelazzi C, Villa G, Mancinelli P, et al. Glycocalyx and sepsis-induced alterations in vascular permea-bility. Crit Care 2015; 19: 26.
- 36) Schmidt EP, Overdier KH, Sun X, et al. Urinary Glycosaminoglycans Predict Outcomes in Septic Shock and Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2016; 194: 439-449.
- 37) Chignalia AZ, Yetimakman F, Christiaans SC, et al. The Glycocalyx and Trauma: A Review. Shock 2016; 45: 338-348.
- 38) Gonzalez Rodriguez E, Cardenas JC, Cox CS, et al. Traumatic brain injury is associated with increased syndecan-1 shedding in severely injured patients. Scand J Trauma Resusc Emerg Med 2018; 26: 102.
- 39) Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy(SHINE) in acute critical illness - a unifying pathophysiologic mechanism. Crit Care 2017; 21: 25.
- 40) DellaValle B, Hasseldam H, Johansen FF, et al. Multiple Soluble Components of the Glycocalyx Are Increased in Patient Plasma After Ischemic Stroke. Stroke 2019; 50: 2948-2951.
- 41) Miranda CH, de Carvalho Borges M, Schmidt A, et al. Evaluation of the endothelial glycocalyx damage in patients with acute coronary syndrome. Athero-sclerosis 2016; 247: 184-188.
- 42) Marechal X, Favory R, Joulin O, et al. Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 2008; 29: 572-576.
- 43) Tarbell JM, Cancel LM. The glycocalyx and its significance in human medicine. J Intern Med 2016; 280: 97-113.
- 44) Ushiyama A, Kataoka H, Iijima T. Glycocalyx and its involvement in clinical pathophysiologies. J Intensive Care 2016; 4: 59.
- 45) Uchimido R, Schmidt EP, Shapiro NI. The glycoca-lyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23: 16.
- 46) Tang TH, Alonso S, Ng LF, et al. Increased Serum Hyaluronic Acid and Heparan Sulfate in Dengue Fever: Association with Plasma Leakage and Dis-ease Severity. Sci Rep 2017; 7: 46191.
- 47) Suwarto S, Sasmono RT, Sinto R, et al. Association of Endothelial Glycocalyx and Tight and Adherens Junctions With Severity of Plasma Leakage in Den-gue Infection. J Infect Dis 2017; 215: 992-999.
- 48) Grandoch M, Bollyky PL, Fischer JW. Hyaluronan: A Master Switch Between Vascular Homeostasis and Inflammation. Circ Res 2018; 122: 1341-1343.
- 49) Cioffi DL, Pandey S, Alvarez DF, et al. Terminal sialic acids are an important determinant of pulmo-nary endothelial barrier integrity. Am J Physiol Lung Cell Mol Physiol 2012; 302: L1067-L1077.
- 50) Zhang J, Kong X, Wang Z, et al. AMP-activated protein kinase regulates glycocalyx impairment and macrophage recruitment in response to low shear stress. FASEB J 2019; 33: 7202-7212.
- 51) Ikonomidis I, Marinou M, Vlastos D, et al. Effects of varenicline and nicotine replacement therapy on arterial elasticity, endothelial glycocalyx and oxida-tive stress during a 3-month smoking cessation program. Atherosclerosis 2017; 262: 123-130.
- 52) Broekhuizen LN, Lemkes BA, Mooij HL, et al. Effect of sulodexide on endothelial glycocalyx and vascu-lar permeability in patients with type 2 diabetes mellitus. Diabetologia 2010; 53: 2646-2655.
- 53) Groen BB, Hamer HM, Snijders T, et al. Skeletal muscle capillary density and microvascular function are compromised with aging and type 2 diabetes. J Appl Physiol(1985) 2014; 116: 998-1005.
- 54) Padberg JS, Wiesinger A, di Marco GS, et al. Dam-age of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 2014; 234: 335-343.
- 55) Kumase F, Morizane Y, Mohri S, et al. Glycocalyx degradation in retinal and choroidal capillary endo-thelium in rats with diabetes and hypertension. Acta Med Okayama 2010; 64: 277-283.
- 56) Meuwese MC, Mooij HL, Nieuwdorp M, et al. Partial recovery of the endothelial glycocalyx upon rosuv-astatin therapy in patients with heterozygous familial hypercholesterolemia. J Lipid Res 2009; 50: 148-153.
- 57) Voyvodic PL, Min D, Liu R, et al. Loss of syndecan-1 induces a pro-inflammatory phenotype in endothe-lial cells with a dysregulated response to athero-protective flow. J Biol Chem 2014; 289: 9547-9559.
- 58) Nagy N, Freudenberger T, Melchior-Becker A, et al. Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. Circulation 2010; 122: 2313-2322.
- 59) Cancel LM, Ebong EE, Mensah S, et al. Endothelial glycocalyx, apoptosis and inflammation in an ath-erosclerotic mouse model. Atherosclerosis 2016; 252: 136-146.
- 60) Mullick AE, Tobias PS, Curtiss LK. Modulation of atherosclerosis in mice by Toll-like receptor 2. J Clin Invest 2005; 115: 3149-3156.
- 61) Fischer JW, Role of hyaluronan in atherosclerosis: Current knowledge and open questions. Matrix Biol 2019; 78-79: 324-336.
- 62) Grandoch M, Kohlmorgen C, Melchior-Becker A, et al. Loss of Biglycan Enhances Thrombin Generation in Apolipoprotein E-Deficient Mice: Implications for Inflammation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36: e41-50.
- 63) Martens RJ, Vink H, van Oostenbrugge RJ, et al. Sublingual microvascular glycocalyx dimensions in lacunar stroke patients. Cerebrovasc Dis 2013; 35: 451-454.
- 64) Nagga K, Hansson O, van Westen D, et al. Increased levels of hyaluronic acid in cerebrospinal fluid in patients with vascular dementia. J Alzheimers Dis 2014; 42: 1435-1441.
- 65) Jaarsma C, Vink H, van Haare J, et al. Non-invasive assessment of microvascular dysfunction in patients with microvascular angina. Int J Cardiol 2017; 248: 433-439.
- 66) Wadowski PP, Hulsmann M, Schorgenhofer C, et al. Sublingual functional capillary rarefaction in chronic heart failure. Eur J Clin Invest 2018; 48.
- 67) Nemoto T, Minami Y, Yamaoka-Tojo M, et al. Endo-thelial glycocalyx and severity and vulnerability of coronary plaque in patients with coronary artery disease. Atherosclerosis 2020; 302: 1-7.
- 68) Retamal MA, Froger N, Palacios-Prado N, et al. Cx43 hemichannels and gap junction channels in astrocytes are regulated oppositely by proinflam-matory cytokines released from activated microglia. J Neurosci 2007; 27: 13781-13792.
- 69) De Vuvst E, Decrock E, De Bock M, et al. Connexin hemichannels and gap junction channels are dif-ferentially influenced by lipopolysaccharide and basic fibroblast growth factor. Mol Biol Cell 2007; 18: 34-46.
- 70) Poelzing S, Rosenbaum DS. Altered connexin43 expression produces arrhythmia substrate in heart failure. Am J Physiol Heart Circ Physiol 2004; 287: H1762-H1770.
- 71) Mensah SA, Cheng MJ, Homayoni H, et al. Regen-eration of glycocalyx by heparan sulfate and sphin-gosine 1-phosphate restores inter-endothelial com-munication. PLoS One 2017; 12: e0186116.
- 72) Patel VB, Zhong JC, Grant MB, et al. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angio-tensin System in Heart Failure. Circ Res 2016; 118: 1313-1326.
- 73) Christ-Crain M, Hoorn EJ, Sherlock M, et al. ENDO-CRINOLOGY IN THE TIME OF COVID-19: Man-agement of diabetes insipidus and hyponatraemia. Eur J Endocrinol 2020; 183: G9-G15.
- 74) Sakabe M, Yoshioka R, Fujiki A. Sick sinus syn-drome induced by interferon and ribavirin therapy in a patient with chronic hepatitis C. J Cardiol Cases 2013; 8: 173-175.
- 75) Burns JC, Cayan DR, Tong G, et al. Seasonality and temporal clustering of Kawasaki syndrome. Epide-miology 2005; 16: 220-225.
- 76) Shirato K, Imada Y, Kawase M, et al. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease. J Med Virol 2014; 86: 2146-2153.
- 77) Agarwal S, Agrawal DK. Kawasaki disease: etio-pathogenesis and novel treatment strategies. Expert Rev Clin Immunol 2017; 13: 247-258.
- 78) Gamez-Gonzalez LB, Moribe-Quintero I, Cisneros-Castolo M, et al. Kawasaki disease shock syndrome: Unique and severe subtype of Kawasaki disease. Pediatr Int 2018; 60: 781-790.
- 79) Kanegaye JT, Wilder MS, Molkara D, et al. Recog-nition of a Kawasaki disease shock syndrome. Pedi-atrics 2009; 123: e783-789.
- 80) Li Y, Zheng Q, Zou L et al. Kawasaki disease shock syndrome: clinical characteristics and possible use of IL-6, IL-10 and IFN-gamma as biomarkers for early recognition. Pediatr Rheumatol Online J 2019; 17: 1.
- 81) Luo L, Feng S, Wu Y, et al. Serum Levels of Syn-decan-1 in Patients With Kawasaki Disease. Pediatr Infect Dis J 2019; 38: 89-94.
- 82) Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395: 1054-1062.
- 83) Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395: 497-506.
- 84) Zheng YY, Ma YT, Zhang JY, et al. COVID-19 and the cardiovascular system. Nat Rev Cardiol 2020; 17: 259-260.
- 85) Shen C, Wang Z, Zhao F, et al. Treatment of 5 Critically Ill Patients With COVID-19 With Conva-lescent Plasma. JAMA 2020; 323(16): 1582-1589.
- 86) Duan K, Liu B, Li C, et al. Effectiveness of conva-lescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA 2020; 117: 9490-9496.
- 87) Tang N, Bai H, Chen X, et al. Anticoagulant treat-ment is associated with decreased mortality insevere coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020; 18: 1094-1099.
- 88) Rizzo P, Vieceli Dalla Sega F, Fortini F, et al. COVID-19 in the heart and the lungs: could we "Notch" the inflammatory storm? Basic Res Car-diol 2020; 115: 31.
- 89) Chappell D, Jacob M, Hofmann-Kiefer K, et al. Hydrocortisone preserves the vascular barrier by protecting the endothelial glycocalyx. Anesthesiol-ogy 2007; 107: 776-784.
- 90) Cheng MJ, Kumar R, Sridhar S, et al. Endothelial glycocalyx conditions influence nanoparticle uptake for passive targeting. Int J Nanomedicine 2016; 11: 3305-3315.