~
検索条件をクリア

アブストラクト

Japanese

Title mRNAワクチンの基盤技術とCOVID-19への展開
Subtitle 特集 新型コロナウイルス1年を振り返って
Authors 内田智士
Authors (kana)
Organization 京都府立医科大学 大学院医学研究科 医系化学
Journal 臨床とウイルス
Volume 49
Number 3
Page 133-138
Year/Month 2021 / 7
Article 報告
Publisher 日本臨床ウイルス学会
Abstract 〔論文要旨〕新型コロナウイルス感染症 (COVID-19) に対して, メッセンジャーRNA (mRNA) ワクチンが迅速に開発され, 重篤な副反応をほとんど伴うことなく, きわめて高い有効性を示している. その開発の背景には, 生体内で外来mRNAによる炎症反応を制御し, 翻訳効率を最大化するためのmRNA設計技術や, mRNAを抗原提示細胞に効率的に導入するための脂質性ナノ粒子等の送達技術に関する長年の研究があった. 現在も供給不足を解消するために, 低用量で効果を得るためのmRNAワクチン設計や, 保存安定性やアナフィラキシー反応を克服するための技術開発が行われている. mRNAワクチンは, 新たなパンデミックに対して応用できるほか, HIVやRSウイルスといったいまだ有効なワクチンがない感染症に対するワクチン開発にも期待され, 将来のウイルスとの戦いを大きく変えるであろう.
Practice 臨床医学:内科系
Keywords mRNAワクチン, COVID-19, mRNAデリバリー, mRNA設計, 脂質性ナノ粒子, mRNA vaccine, mRNA delivery, mRNA designing, lipid nanoparticle

English

Title Platform technologies of mRNA vaccines and their application to COVID-19
Subtitle
Authors Satoshi UCHIDA
Authors (kana)
Organization Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
Journal Clinical Virology
Volume 49
Number 3
Page 133-138
Year/Month 2021 / 7
Article Report
Publisher Japanese Society of Clinical Virology
Abstract Messenger RNA (mRNA) vaccines have been rapidly developed against coronavirus disease 2019 (COVID-19), demonstrating markedly high efficacy with minimal incidences of serious adverse effects. Their success is owed to many years of research and development for designing mRNA to control immunogenicity and maximize translational efficiency, and establishing mRNA delivery systems, including lipid nanoparticles, to introduce mRNA efficiently to antigen-presenting cells. Studies are actively ongoing to solve the issue of the limited worldwide supply of mRNA vaccines by developing effective vaccines that function at low doses, and to overcome the problems related to storage at low temperatures and rare events of anaphylaxis. mRNA vaccines are also applicable to future pandemics and other infectious diseases that lack effective vaccines, including HIV and RSV, providing strong tools for the battle between viruses and humans.
Practice Clinical internal medicine
Keywords mRNA vaccine, COVID-19, mRNA delivery, mRNA designing, lipid nanoparticle
  • 全文ダウンロード: 従量制、基本料金制の方共に770円(税込) です。

参考文献

  • 1) WHO:Draft landscape and tracker of COVID-19 candidate vaccines. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines .
  • 2) Corbett KS, Edwards DK, Leist SR, et al.:SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020;586:567-571.
  • 3) Jackson LA, Anderson EJ, Rouphael NG, et al.:An mRNA vaccine against SARS-CoV-2-preliminary report. N Engl J Med 2020;383:1920-1931.
  • 4) Walsh EE, Frenck RW Jr. Falsey AR, et al.:Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med 2020;383:2439-2450.
  • 5) Polack FP, Thomas SJ, Kitchin N, et al.:Safety and efficacy of the BNT162b2 mRNA covid-19 vaccine, N Engl J Med 2020;383:2603-2615.
残りの37件を表示する
  • 6) Baden LR, El Sahly HM, Essink B, et al.:Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N Engl J Med 2021;384:403-416.
  • 7) Shimabukuro TT, Kim SY, Myers TR et al.:Preliminary findings of mRNA covid-19 vaccine safety in pregnant persons. N Engl J Med 2021;10.1056/NEJMoa2104983.
  • 8) Frenck RW Jr. Klein NP, Kitchin N, et al.:Safety, immunogenicity. and efficacy of the BNT162b2 covid-19 vaccine in adolescents. N Engl J Med 2021;10.1056/NEJMoa2107456.
  • 9) Haas EJ, Angulo FJ, McLaughlin JM, et al.:Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel:an observational study using national surveillance data. Lancet 2021;397:1819-1829.
  • 10) Liu Y, Liu J, Xia H, et al.:Neutralizing activity of BNT162b2-elicited serum. N Engl J Med 2021;384:1466-1468.
  • 11) Abu-Raddad LJ, Chemaitelly H, Butt AA, et al.:Effectiveness of the BNT162b2 covid-19 vaccine against the B.1.1.7 and B.1.351 variants. N Engl J Med 2021;10.1056/NEJMc2104974.
  • 12) Doria-Rose N, Suthar MS, Makowski M, et al.:Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for covid-19. N Engl J Med 2021;10. 1056/NEJMc2103916.
  • 13) Pardi N, Hogan MJ, Porter FW, et al.:mRNA vaccines-a new era in vaccinology. Nat Rev Drug Discov 2018;17:261-279.
  • 14) Uchida S, Perche F, Pichon C, et al.:Nanomedicine-based approaches for mRNA delivery. Mol Pharm 2020;17:3654-3684.
  • 15) Verbeke R, Lentacker I, De Smedt SC, et al.:The dawn of mRNA vaccines:the COVID-19 case. J Control Release 2021;333:511-520.
  • 16) Harui A, Suzuki S, Kochanek S, et al.:Frequency and stability of chromosomal integration of adenovirus vectors. J Virol 1999;73:6141-6146.
  • 17) Wang Z, Troilo PJ, Wang X, et al.:Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 2004;11:711-721.
  • 18) Rosa SS, Prazeres DMF, Azevedo AM, et al.:mRNA vaccines manufacturing:challenges and bottlenecks. Vaccine 2021;39:2190-2200.
  • 19) Krieg PA, Melton DA:Functional messenger RNAs are produced by SP6 in vitro transcription of cloned cDNAs. Nucleic Acids Res 1984;12:7057-7070.
  • 20) Wolff JA, Malone RW, Williams P. et al.:Direct gene transfer into mouse muscle in vivo. Science 1990;247:1465-1468.
  • 21) Andries O, Mc Cafferty S, De Smedt SC, et al.:N1-methylp-seudouridine-incorporated mRNA ourperforms pseudouridine-incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J Control Release 2015;217:337-344.
  • 22) Jemielity J:Novel "anti-reverse" cap analogs with superior translational properties. RNA 2003;9:1108-1122.
  • 23) Zust R, Cervantes-Barragan L, Habjan M, et al.:Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat Immunol 2011;12:137-143.
  • 24) Holtkamp S, Kreiter S, Selmi A, et al.:Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 2006;108:4009-4017.
  • 25) Kariko K, Muramatsu H, Ludwig J, et al.:Generating the optimal mRNA for therapy:HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res 2011;39:e142.
  • 26) Orlandini von Niessen AG, Poleganov MA, Rechner C, et al.:Improving mRNA-based therapeutic gene delivery by expression-augmenting 3'UTRs identified by cellular library screening. Mol Ther 2019;27:824-836.
  • 27) Cullis PR, Hope MJ:Lipid nanoparticle systems for enabling gene therapies. Mol Ther 2017;25:1467-1475.
  • 28) Sabnis S, Kumarasinghe ES, Salerno T, et al.:A novel amino lipid series for mRNA delivery:improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol Ther 2018;26:1509-1519.
  • 29) Liang F, Lindgren G, Lin A, et al.:Efficient targeting and activation of antigen-presenting cells in vivo after modified mRNA vaccine administration in rhesus macaques. Mol Ther 2017;25:2635-2647.
  • 30) Lindsay KE, Bhosle SM, Zurla C, et al.:Visualization of early events in mRNA vaccine delivery in non-human primates via PET-CT and near-infrared imaging. Nat Biomed Eng 2019;3:371-380.
  • 31) Wang Z, Schmidt F, Weisblum Y, et al.:mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants. Nature 2021;592:616-622.
  • 32) Sahin U, Muik A, Derhovanessian E, et al.:COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses. Nature 2020;586:594-599.
  • 33) McMahan K, Yu J, Mercado NB, et al.:Correlates of protection against SARS-CoV-2 in rhesus macaques. Nature 2021;590:630-634.
  • 34) Sahin U, Muik A, Vogler I, et al.:BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021;10.1038/s41586-021-03653-6.
  • 35) Igyarto BZ, Jacobsen S, Ndeupen S:Future considerations for the mRNA-lipid nanoparticle vaccine platform. Curr Opin Virol 2021;48:65-72.
  • 36) Moghimi SM:Allergic reactions and anaphylaxis to LNP-Based COVID-19 vaccines. Mol Ther 2021;29:898-900.
  • 37) Nogueira SS, Schlegel A, Maxeiner K, et al.:Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery. ACS Applied Nano Materials 2020;3:10634-10645.
  • 38) Schoenmaker L, Witzigmann D, Kulkarni JA, et al.:mRNA-lipid nanoparticle COVID-19 vaccines:structure and stability. Int J Pharm 2021;601:120586.
  • 39) Jones KL, Drane D, Gowans EJ:Long-term storage of DNA-free RNA for use in vaccine studies. Biotechniques 2007;43:675-681.
  • 40) Hong S-H, Oh H, Park YW, et al.:Immunization with RBD-P2 and N protects against SARS-CoV-2 in nonhuman primates. Science Advances 2021;7:eabg7156.
  • 41) Vogel AB, Lambert L, Kinnear E, et al.:Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses. Mol Ther 2018;26:446-455.
  • 42) Uchida S, Yoshinaga N, Yanagihara K, et al.:Designing immunostimulatory double stranded messenger RNA with maintained translational activity through hybridization with poly A sequences for effective vaccination. Biomaterials 2018;150:162-170.