アブストラクト
Japanese
Title | 川崎病研究の最前線 |
---|---|
Subtitle | 総説 |
Authors | 井上隆志, 村上将啓, 松田明生 |
Authors (kana) | |
Organization | 国立成育医療研究センター研究所免疫アレルギー・感染研究部 |
Journal | 日本小児アレルギー学会誌 |
Volume | 35 |
Number | 2 |
Page | 145-151 |
Year/Month | 2021 / |
Article | 報告 |
Publisher | 日本小児アレルギー学会 |
Abstract | 「抄録」 : 川崎病は, 川崎富作博士により1967年に報告された乳幼児の血管炎症候群である. 臨床的に一番問題なのは冠動脈炎症による心後遺症 (冠動脈瘤) である. 従って, 急性期治療最大の目標はなるべく早期に血管炎を沈静化し, 心後遺症合併を予防することである. 2000年代になって標準治療として免疫グロブリン療法 (intravenous immunoglobulin : IVIG) が確立し, 心後遺症合併による突然死の数が激減した. その後の多くの臨床研究, ゲノム研究の成果からさらに治療法は進歩している. 特に, ゲノム研究を背景に承認薬となった免疫抑制剤であるシクロスポリンは, 基礎研究成果から着想した治療法開発で, 今後の研究が目指すべき方向性を示している. 一方で, 治療法の進歩にも関わらず, いまだ年間300人程度の心後遺症合併患者が発生しており, 川崎病は日本を含む先進諸国における小児期発症後天性心疾患の最大の原因となっている. これを克服するためには, 病態メカニズムに基づいたより疾患特異性の高い治療薬の開発が求められる. |
Practice | 臨床医学:内科系 |
Keywords | 川崎病, 免疫グロブリン療法, 治療法, 冠動脈血管内皮細胞, coronary artery endothelial cells, intravenous immunoglobulin, Kawasaki disease, medical treatment |
English
Title | Frontiers of Kawasaki disease research |
---|---|
Subtitle | |
Authors | Takashi Inoue, Shokei Murakami, Akio Matsuda |
Authors (kana) | |
Organization | Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development |
Journal | The Japanese Journal of Pediatric Allergy and Clinical Immunology |
Volume | 35 |
Number | 2 |
Page | 145-151 |
Year/Month | 2021 / |
Article | Report |
Publisher | Japanese Society of Pediatric Allergy and Clinical Immunology |
Abstract | [Summary] : Kawasaki disease (KD), first described by Dr. Tomisaku Kawasaki in 1967 in Japan, is one of the most common pediatric systemic vasculitides of unknown etiology. The most serious clinical issue in KD is formation of coronary artery lesions due to severe inflammation of the coronary arteries. Prevention of this complication is the most important goal of treatment of acute-phase KD. In the 2000s, intravenous immunoglobulin (IVIG) has become the standard treatment for acute KD. IVIG effectively suppresses coronary artery inflammation and has dramatically reduced the incidence of aneurysms. Many clinical and genomic studies have led to further advances in KD treatment. In particular, an immunosuppressant drug, cyclosporine, was recently approved for KD. That was an important accomplishment based on basic genome research, and it represents the direction that future research should take. On the other hand, despite advances in treatment, about 300 patients still develop cardiac sequelae annually in Japan. KD is the leading cause of childhood-onset acquired heart disease in developed countries, including Japan. To overcome this problem, we need to continue developing more disease-specific, effective therapeutic agents based on pathological mechanisms. |
Practice | Clinical internal medicine |
Keywords | coronary artery endothelial cells, intravenous immunoglobulin, Kawasaki disease, medical treatment |
- 全文ダウンロード: 従量制、基本料金制の方共に770円(税込) です。
参考文献
- 1) 川崎富作. 指趾の特異的落屑を伴う小児の急性熱性皮膚粘膜淋巴腺症候群 : 自験例50例の臨床的観察. アレルギー 1967 ; 16 : 178-222.
- 2) 渋谷紀子. 川崎病発見前の川崎病. 小児科診療 2006 ; 69 : 950-955.
- 3) 特定非営利活動法人日本川崎病研究センター川崎病全国調査担当グループ. 第25回川崎病全国調査成績. https://www.jichi.ac.jp/dph/wp-dph/wp-content/uploads/2019/09/1bb34be7b6c9f852c1df45cc2ac4152c-1.pdf
- 4) Holman RC, et al. Racial/ethnic differences in the incidence of Kawasaki syndrome among children in Hawaii. Hawaii Med J 2010 ; 69 : 194-197.
- 5) 日本川崎病学会NPO法人日本川崎病研究センター. 川崎病学会運営委員を対象とした川崎病とSARS-CoV-2との関連についてのアンケート調査の結果について. http://www.jskd.jp/pdf/KD-COVID-Questionnaire0108.pdf
残りの27件を表示する
- 6) 日本川崎病学会 病因検討小委員会. 川崎病の病因研究概論 2016. http://www.jskd.jp/about/pdf/times.pdf
- 7) Furusho K, et al. High-dose intravenous gam-maglobulin for Kawasaki disease. Lancet 1984;2:1055-1058.
- 8) Newburger JW, et al. A single intravenous infu-sion of gamma globulin as compared with four in-fusions in the treatment of acute Kawasaki syn-drome. N Engl J Med 1991;324:1633-1639.
- 9) Kato H, Koike S, Yokoyama T. Kawasaki disease: Effect of treatment on coronary artery involve-ment. Pediatrics 1979;63:175-179.
- 10) Kobayashi T, et al. Prediction of intravenous im-munoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 2006;113:2606-2612.
- 11) Egami K, et al. Prediction of resistance to intrave-nous immunoglobulin in patients with Kawasaki disease. J Pediatr 2006;149:237-240.
- 12) Sano T, et al. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur J Pediatr 2007;166:131-137.
- 13) Kobayashi T, et al. Risk stratification in the deci-sion to include prednisolone with intravenous im-munoglobulin in primary therapy of Kawasaki disease. Pediatr Infect Dis J 2009;28:498-502.
- 14) Kobayashi T, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary ar-tery abnormalities in severe Kawasaki disease(RAISE study): a randomized, open-label, blinded-endpoints trial. Lancet 2012;379:1613-1620.
- 15) Miyata K, et al. Efficacy and safety of intravenous immunoglobulin plus prednisolone therapy in pa-tients with Kawasaki disease(Post RAISE): a multicentre, prospective cohort study. Lancet Child Adolesc Health 2018;2:855-862.
- 16) 日本小児循環器学会学術委員会 ; 川崎病急性期治療ガイドライン作成委員会. 川崎病急性期治療ガイドライン(2020年改訂版). Ped Cardiol Card Surg 2020 ; 36 : S1.1-S1.29.
- 17) Inoue T, et al. Functional benefits of corticoster-oid and IVIG combination therapy in a coronary artery endothelial cell model of Kawasaki disease. Pediatr Rheumatol 2020;18:76.
- 18) Hoshina T, et al. High mobility group box 1(HMGB1)and macrophage migration inhibitory factor(MIF)in Kawasaki disease. Scand J Rheu-matol 2008 ; 37 : 445-449.
- 19) Eguchi T, et al. An elevated value of high mobil-ity group box 1 is a potential marker for poor re-sponseto high-dose of intravenous immunoglobu-lin treatment in patients with Kawasaki syn-drome. Pediatr Infect Dis J 2009 ; 28 : 339-341.
- 20) Ahn JG, et al. HMGB1 gene polymorphism is as-sociated with coronary artery lesions and intrave-nous immunoglobulin resistance in Kawasaki dis-ease. Rheumatology(Oxford)2019;58:770-775.
- 21) Fury W, et al. Transcript abundance patterns in Kawasaki disease patients with intravenous im-munoglobulin resistance. Hum Immunol 2010;71:865-873.
- 22) Inoue T, et al. IL-1β and IL-17A are involved in IVIG resistance through activation of C/EBPβ andδin a coronary arterymodel of Kawasaki dis-ease. Allergy 2020;75:2102-2105.
- 23) Burns JC, et al. Infliximab treatment for refrac-tory Kawasaki syndrome. J Pediatr 2005;146:662-667.
- 24) Kanai T, et al. Ulinastatin, a urinary trypsin in-hibitor, for the initial treatment of patients with Kawasaki disease: a retrospective study. Circula-tion 2011;124:2822-2828.
- 25) Hokosaki T, et al. Long-term efficacy of plasma exchange treatment for refractory Kawasaki dis-ease. Pediatr Int 2012;54:99-103.
- 26) Hamada H, et al. Efficacy of primary treatment with immunoglobulin plus ciclosporin for preven-tion of coronary artery abnormalities in patients with Kawasaki disease predicted to be at in-creased risk of non-response to intravenous im-munoglobulin(KAICA): a randomized controlled, open-label, blinded-endopoints, phase 3 trial. Lan-cet 2019 ; 393 : 1128-1137.
- 27) Onouchi Y. The genetics of Kawasaki disease. Int J Rheum Dis 2018;21:26-30.
- 28) Onouchi Y, et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 2008;40:35-42.
- 29) Onouchi Y, et al. Common variants in CASP3 con-fer susceptibility to Kawasaki disease. Hum Mol Genet 2010;19:2898-2906.
- 30) Onouchi Y, et al. ITPKC and CASP3 polymor-phisms and risks for IVIG unresponsive ness and coronary artery lesion for mation in Kawasaki dis-ease. Pharmacogenomics J 2013;13:52-59.
- 31) Matsuda A, et al. Anti-inflammatory effects of high-dose IgG on TNF-α-activated human coro-nary artery endothelial cells. Eur J Imminol 2012;42:2121-2131.
- 32) Ishizaka K, Ishizaka T, Hornbrook MM. Physico-chemical properties of reaginic antibody : V. Cor-relation of reaginic activity with γE-globulin anti-body. J Immunol 1966;97:840-853.